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In this paper, we propose a novel method to achieve both dense 3D reconstruction of the scene and esti-
mation of the camera intrinsic parameters by using coplanarities and other constraints (e.g., orthogonal-
ities or parallelisms) derived from relations between planes in the scene and reflected curves of line lasers
captured by a single camera. In our study, we categorize coplanarities in the scene into two types: impli-
cit coplanarities, which can be observed as reflected curves of line lasers, and explicit coplanarities, which
are, for example, observed as walls of a building. By using both types of coplanarities, we can construct
simultaneous equations and can solve them up to four degrees of freedom. To upgrade the solution to the
Euclidean space and estimate the camera intrinsic parameters, we can use metric constraints such as
orthogonalities of the planes. Such metric constraints are given by, for example, observing the corners
of rectangular boxes in the scene, or using special laser projecting device composed of two line lasers
whose laser planes are configured to be perpendicular.
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1. Introduction

Line lasers are frequently used for active 3D scanning systems.
In most of the systems, laser planes are calibrated first, and the
points lit by the lasers are reconstructed by triangulation [1,2]. In
these systems, known-shaped objects, or calibration markers are
required to calibrate the laser planes.

Geometrically, a line laser can be considered as a device for
extracting a set of points that exist on the same plane (coplanar
points). Although coplanarity has been researched in single view
reconstruction methods, this property of line lasers has not been
fully utilized for active vision systems. By utilizing coplanarities
extracted by line lasers, an active measurement system without
need for explicit calibration of laser planes (planes formed by line
lasers) can be realized.

In this study, we propose a method for estimating dense 3D
shapes and the camera parameters by using information such as
coplanarities that are extracted from curves on the scenes lit by
line lasers (we call this type of coplanarity as implicit coplanarity),
or from planes in the scenes (we call this type of coplanarity as ex-
plicit coplanarity). Fig. 1(left) shows an example of the system used
to observe implicit and explicit coplanarities, where the target
scene is captured by a fixed camera while the scene is lit by a line
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laser. By using this system, a large number of coplanarities can be
also observed as curves that are reflection of the laser on the scene
by capturing a sequence of images while moving the laser projec-
tor. By accumulating the curves of multiple images, a number of
intersection points are extracted as shown in Fig. 1(right). In this
paper, methods for reconstruction of 3D positions of the curves
using the intersection points are presented.

Although coplanarities play an important role for shape recon-
struction, they cannot be used for estimating the camera intrinsic
parameters or for Euclidean reconstruction. For these purposes,
we need other types of constraints (e.g., orthogonalities or parallel-
isms). We call this kind of constraints metric constraints. Metric
constraints can be extracted from relationships between real
planes in the scene or laser planes. For example, we can obtain
orthogonalities by using a laser projector composed of two line la-
sers with laser planes forming a right angle.

Reconstruction in the proposed method is realized by solving
the simultaneous equations constructed from both the coplanarit-
ies and the metric constraints. As described later, coplanarity con-
straints can be described by linear equations, and metric
constraints can be described by either linear or non-linear equa-
tions. The linear equations from coplanarity constraints can be
solved only up to 4-DOF indeterminacies that are represented by
projective transformation. Therefore, our method first solves linear
simultaneous equations achieving projective reconstruction, and
upgrades the solution to the Euclidean space. Depending on the
representation of metric constraints that are either linear or
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non-linear, two methods are presented in this paper. The method
that uses linear representation can be applicable even if all the
intrinsic parameters are unknown, as long as there are sufficient
number of (at least nine) dependent constraints of orthogonalities.
The linear method does not need an initial solution that is usually
required for the non-linear method. However, if some or all of the
intrinsic parameters are known, the method using non-linear rep-
resentation is more stable and accurate.

Since we treat implicit and explicit coplanarities equally, our
method is applicable even when there are no implicit coplanarities.
In this case, a scene is reconstructed only from a single image i.e.,
single view reconstruction). An advantage of our method com-
pared to previous single view reconstruction methods is that our
method is applicable for a scene that has enough geometrical con-
straints, but does not have special features for self-calibration, such
as rectangular boxes or vanishing points with known angles be-
tween them.

2. Related works

There are many active stereo range finders using structured
light including commercial products [1,2], and 3D reconstruction
techniques are summarized in some survey papers [3,4]. With
those systems, the laser plane is fixed, or controlled by precision
mechanical devices. For these systems, laser plane calibration is re-
quired and precise calibration should be applied previously [5-7].
Some researches were focused on self-calibration of cameras and
projecting devices for active stereo range finders [8-10].

In the case of a handheld laser 3D scanner, which is recently
attracting wide attention because of its maneuverability and sim-
plicity, the relationship between the laser plane and the camera
position varies every time and must be calibrated online. For
example, Chu et al. have proposed an explicit calibration using a
cubic frame surrounding the target object [11]. Bouguet and Pero-
na proposed a 3D scanner using “shadow planes” cast by a
straight-edged object that is calibrated by a reference plane [12].
Fisher et al. also used shadows of a straight-edged object, whose
position and orientation were estimated (i.e., calibrated) from ob-
served patterns printed on the surface of the object [13]. Furukawa
and Kawasaki placed LED markers on the sensor itself and captured
the markers with a single camera to estimate the laser plane [14].
The above-mentioned methods solved the online laser plane cali-
bration problems, however, they still require an object or markers
for calibration. Recently, Furukawa et al. proposed a method which
does not require an object in order to calibrate the laser plane, but
self-calibrates it [15]. However, the method requires precise initial
parameters, special capturing device and strict conditions for
scanning.

There are some handheld 3D scanners in which the laser plane
projector and a camera are at a fixed position to each other [16,17].
Such devices require laser plane calibration only once, and thus,
the special laser plane calibration method is not usually necessary.

With regard to single view reconstructions, most techniques
including ours perform the self-calibration of the camera parame-
ters for 3D reconstruction. For the purpose, some studies use mul-
tiple vanishing points [18-22]. In those studies, angles between
the directions corresponding to the vanishing points should be
known for the self-calibration. There are other techniques that di-
rectly use the rectangular boxes or the parallelepipeds [23,24]. In
contrast to these methods, our method can use any type of metric
constraints as long as they can be expressed as equations of points,
planes or lines: thus, in some cases, our method can solve prob-
lems that cannot be solved by the previous methods.

Some researchers have proposed methods for 3D reconstruction
from only basic geometrical constraints such as coplanarities or
orthogonalities [25,26]. These methods represent geometrical

constraints with non-linear equations that are solved using
specialized algorithms. Compared to these systems, our method
is much simpler.

3. System overview

As already described, we propose a laser scanning system that
consists of a line laser projector and a fixed camera, which may
be calibrated or uncalibrated, as shown in Fig. 1(left). First, we de-
fine several terms to describe geometrical elements that are used
in this paper. Light projected by a line laser generates a plane in
3D space. We refer to this plane as a laser plane. When a scene is
lit by a line laser, the intersection curves between the scene and
the laser plane can be observed by a camera. We refer to these
curves as laser curves. Some scenes include planar regions of sur-
face. We refer to these regions as explicit planes.

In terms of line laser projector, various kinds of configuration
can be considered. In this study, we actually constructed two types
of configurations for our experiments. The first one is a single line
laser projecting device, which is available easily with low cost
(Fig. 2(a)). We call this configuration a single-laser configuration.
We also built a special laser projecting device consisting of two line
lasers that were aligned precisely at 90° as shown in Fig. 2(b). We
call this configuration a crosshair-laser configuration. In this case, no
metric constraints are required from the scene. The angle between
the two laser planes can be adjusted by projecting the crosshair
pattern to a plane on which a large pattern of an angle of 90° is
drawn. This plane should be orthogonal to both of the laser planes.
An example of methods to achieve this configuration, is using a
corner of a rectangular room as shown in Fig. 2(c).

With the single-laser configuration, it is advantageous that no
special device is needed for scanning 3D scenes. However there
are some limitations for this configuration, such as that (1) explicit
planes with some geometrical constraints such as orthogonalities
between them are required in the scene, and that (2) user interac-
tions are needed to specify the explicit planes and the geometrical
constraints between them. With the crosshair-laser configuration,
although a special laser projecting device is needed, explicit planes
are not required in the target scenes, and thus, manual interactions
are not necessary.

A scanning process of the system is performed as the following
steps:

Step 1 A sequence of images is captured with the fixed camera
while moving the line laser back and forth manually.

Step 2 While capturing, laser curves are extracted online and
information of those extracted curves is stored instead
of entire captured images to reduce data storage size.

Step 3 From all the captured laser curves, a smaller number of
laser curves are selected to reduce computational cost.
For example, 20 to 40 frames with constant intervals were
selected for our experiments.

Step 4 By aggregating the selected laser curves on a common
image plane, intersection points between those curves
can be obtained. These intersection points are points that
exist on multiple planes.

Step 5 Applying the projective reconstruction method (Section
4), the laser planes of the selected laser curves are
reconstructed up to 4-DOF indeterminacies from the
coordinates of the intersection points on the image
plane.

Step 6 Then, 4-DOF indeterminacies are eliminated by applying
the metric reconstruction method (Section 5) using
metric constraints, such information is given by two
ways:
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Fig. 1. (left) Observation of implicit and explicit coplanarities. (right) Points of intersection of the laser curves.
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Fig. 2. Laser projecting device: (a) a laser projector with single-laser configuration, (b) a laser projector with crosshair-laser configuration, (c) a method for adjusting

crosshair-laser configuration.

(a) For the single-laser configuration, this information can be
retrieved from a scene manually. In terms of the manual
step, drawing curves freely on a planar regions on an image,
as shown in Fig. 3, is sufficient. It is easy and simple.

(b) For the crosshair-laser configuration, this information is
automatically given from relationship between two lasers
(90°).

Step 7 Using the reconstructed laser plane parameters and the
extracted laser curves, 3D shapes of the selected laser
curves are reconstructed by a light-section method
(explained in Section 6).

Using reconstruction results of the selected laser curves,
laser curves from all the frames are reconstructed using
the dense reconstruction technique (Section 6).

Step 8

4. Projective reconstruction from coplanarities

Let us assume that we have a camera coordinate system whose
origin is at the center of the perspective camera. The x and y axes
are directed toward the right and top direction relative to the
camera, respectively, and the z axis is directed backward from
the camera. In this paper, the 3D coordinates are defined in the
camera coordinate system.

Suppose a set of N planes including both laser planes and explicit
planes (in the mathematical formulation, implicit and explicit
coplanarities are treated equally in the proposed method). Let jth
plane of the set be ;. It is assumed that none of these planes includes
the optical center of the camera." Then, we can express the plane 7; by
the form

ax+by+cz+1=0 (1)
in the camera coordinates system.

1 The reason is as follows. If a plane includes the optical center, the plane cannot be
used to determine depths of the points on it because the length of baseline for

triangulation is zero. Thus, the plane is not useful for 3D reconstruction and should be
removed before projective reconstruction.

Fig. 3. Curves of each color are within a planar region and they are coplanar. Such
coplanar curves are drawn by hand. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Suppose that we can observe M points that are on intersection
lines of multiple laser planes or implicit planes as images of the
points captured by a fixed camera. Let the ith point of the set be
represented as & and exist on the intersection line of m; and .
Let the coordinates u; = [u;7;]" be the image of & on the image
plane. Let the 3D coordinates of &; be X; = [x;,y:,z]", let the upper
triangular matrix that represents the intrinsic parameter of the
camera be K, and let @; be defined as @; = [u;,1]", then the projec-
tion of ¢; can be represented as

u o g p,
zi{]‘}:ziﬁizl(x-: 0 g p,|x, 2)
00 1

where «, 8, g, p, and p, are intrinsic parameters of the camera. The
objective of the problem is estimating the laser planes and the ex-
plicit planes from the 2D coordinates w; (1 <i < M). The intrinsic
parameters are also estimated if they are unknown.

Let the parameter vector of plane =; be a;= [a;,b;,¢;]". From the
form (1),

a/xi+1=za/K'a+1=za 1;+1=0, (3)

wherea;” = aJTl(’]. a: can be regarded as a new parameter vector of
plane 7; into which the intrinsic parameters are incorporated. In the
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following, we describe a method to obtain a;. Dividing the form
(3) by z; and substituting 1/z; with t;,

a;Tﬁ,- + t,‘ =0. (4)
Since the point ¢; is also on the plane 7y,
a*kali +t=0 (5)

Eq. (5) includes a variable t; which depends on the depth of point &;.
In many cases, the number of the points, or M, becomes much larger
than the number of planes, or N (for example, the data of Fig. 6(b)
used in the experiment has 613 points, whereas there are only 40
planes). In these cases, using t; as a variable causes a large increase
of the number of variables, which is undesirable from the viewpoint
of computational costs. So, we eliminate t; from Egs. (4) and (5).
Then, a linear homogeneous equation

Uja —u/a =u/(a -a;) =0 (6)

with variables a7 and a; can be obtained for each of the set of points.
Since Eq. (6) is a homogeneous equation and only the difference
a; —a; appears in it, there are indeterminacies of scaling with a
same factor and addition of a same vector. That is, if a set of vari-

ables a; = a; and a; = aj is a solution of Eq. (6) the set of

aj =sa;+b, a;=sa,+b (7)
is also a solution for an arbitrary scalar s and an arbitrary 3D vector
b.

The equations of form (6) for M points form a set of simulta-
neous homogeneous linear equations. This can be represented by
a matrix L with M rows and 3N columns whose elements can be
described by u;, v; (1 <i< M), and a 3N-dimensional solution vec-

tor p = [ajT,...,a;\,T]T. By using them, the equations can be de-
scribed by a matrix form as
Lp=0. (8)

The solutions of the form (8) have the same indeterminacies as the
form (7). Thatis, if p = [a;",...,ay ] = [a},...,ay]  isa particular
solution of Eq. (8),
a; saj+b aj b
P=|:|=|  |=s|:i|+]: (9)
a; say +b aj b
is also a solution for an arbitrary scalar s and an arbitrary 3D vector
b. Thus, the solution p has at least 4-DOF indeterminacy.

Here, we assume that the solutions of Eq. (8) have only the 4-
DOF indeterminacy that is described above and degenerate condi-
tions where this assumption does not hold will be discussed later.
In this case, the general form of the solutions of Eq. (8) can be given
as the form (9). Because of the indeterminacy of adding vector
[b,...,b"]", we can assume ay =0 for a particular solution
[ar,... ,.';l}VT]T without losing generality of the form (9). Under this
assumption, by defining p’ = [a/', ... 7a;vt]]T and by defining L’ as
the submatrix of the left 3N - 3 columns of L, we can get an equa-
tion L'p’ = 0. Then, p’ can be obtained as the basis of the 1-D null
space of L', and the general solution p can be represented by

!

a

-2

b
+ | (10)
b

=

Il

Il

(%}

=

+

Il

w

!
ay_1

0

& L.
=%
o

using an arbitrary scalar s and an arbitrary 3D vector b.

In real data, observation noise is included. Even in these cases,
Eq. (8) has a trivial solution p = 0. Also, because of the form of
Eq. (6), the 3-DOF indeterminacy caused by a vector b rigorously

remains even if the data has observation noise. The 3-DOF indeter-
minacy caused by a scalar s does not rigorously remains for real
data. Thus, for actual data that has noise and is not a degenerate
condition, L has three zero singular values and one small singular
value (the fourth minimum singular value). From the same reason,
L' does not have a rigorous null space, but its minimum singular
value becomes small.

To conclude this section, we point out that the 4-DOF indeter-
minacy of the general solution of the planes can be described as
4-parameter 3D homographies that transform the 3D points and
the plane parameters. The plane parameter a;" can be described
as a 3D homogeneous coordinates [aj*T 1} . Let a 4 x 4 matrix
B(b,s) be defined as

B(b,s) = [,j' ﬂ

(11)
Because of the indeterminacy described as the form (9), if a set of
planes [af l] T, 1 <j <N is a solution, then the set of planes
[af 1}B(b,s), I<j<N (12)
is also a solution.

The plane parameter a; = K 'a* can be regarded as a projective
plane that is transformed by the intrinsic parameters of the cam-
era. Let a point on the projective plane a; be X', then, a’x' =0.
Since the inverse of B(b,s) is (B(b,s))" = B(-(1/s)b,1/s),

A1)

=0={[a" 1]B(b.5)} (B(f(l/s)b, 1/s) {’; D —0
(13)

holds. These forms mean that, if a plane parameter is transformed
by the form (12), points on the plane x" are transformed by the
homography B(-(1/s)b,1/s). This form represents a group of 4-
parameter homographies that transform 3D points X" and are called
generalized projective bas-relief transformations [27]. It is also
pointed out in Ref. [28] that solutions of shape reconstruction using
line-lasers or shadows of straight edges inevitably have 4-DOF inde-
terminacy unless using some metric constraints.

Note that, for the crosshair-laser configuration, we do not have
to distinguish the cross points formed by the two laser lines of
crosshair pattern and other intersection points. This is because
the two laser planes generated by the projector can be treated as
unrelated two planes in projective reconstruction step. The orthog-
onality between those two planes is used in metric reconstruction
step described in Section 5.

4.1. Degenerate conditions

To obtain the solution of form (10), it is assumed that the de-
grees of freedom of solution p of Eq. (8) is four. Here, we discuss
the conditions under which this assumption holds true. We have
assumed that there are N planes in the scene, thus, the number
of parameters of the planes is 3N. Since one intersection point
yields one equation, at least 3N — 4 points are required for the
solution having 4-DOF indeterminacy. However, even if this condi-
tion is fulfilled, the solution may have indeterminacy of more de-
grees of freedom, because of degenerate conditions caused by the
specific locations of the points or the specific shape of the scene.
In the following are examples of such cases.

Fig. 4(a) shows extracted laser curves drawn as bold solid
curves and a single dashed curve. In the figure, “all” the intersec-
tion points (circles in the figure) between the dashed laser curve
and the others (solid curves) are on a single line (i.e., collinear).
In this case, the laser plane that includes the dashed laser curve
has indeterminacy even if all the other curves are determined.
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Thus, it is a degenerate condition and the total indeterminacy is
more than 4 DOFs. This case often occurs if the target scene in-
cludes planar regions. Since the laser curve becomes a straight line
segment in a planar region, the collinear condition is fulfilled if all
the intersection points of a laser curve is in a planar region. Thus,
this type of degenerate conditions often occurs, and it is desirable
to detect such laser curves and remove them. A method for achiev-
ing this is described later.

In contrast to a degenerate condition of Fig. 4(a) caused by a sin-
gle laser curve, there are also degenerate conditions caused by
multiple laser curves. Since the number of combinations of multi-
ple laser curves is large, general discussion of the conditions is not
easy. However, it is possible to show some examples. Fig. 4(b) is
such an example, where the set of laser curves are divided into
either solid curves or dashed curves, and “all” the intersection
points (circles in the figure) between those two groups are collin-
ear on the image plane. In this case, the shapes of the dashed laser
curves have indeterminacy, even if all the shapes of the solid
curves are determined, and the total indeterminacy is more than
4 DOFs. Since this condition requires special arrangements of the
laser curves, it seldom occurs if sufficiently large number of laser
curves are captured.

There is a simple method which we have found effective for
reducing degenerate conditions shown in Fig. 4(a). For each laser
curve, collinearity of the set of intersection points that are on the
curve should be checked. If they are collinear, the laser curve is
not used for reconstruction. Obviously, the cases of Fig. 4(a) are
avoided by this method. A method for detecting collinearity from
real data is based on principal component analysis. If the root of
variance of the second component of the intersection points of a la-
ser curve is less than a threshold, these points are determined to be
collinear. In actual cases, numerical stability of the projective solu-
tion often becomes worse even if those intersection points are just
“nearly collinear.” To avoid these near collinearity, using a “large”
threshold (e.g., about 10 pixels) is a practical solution.? If we apply
this method to the target scene that has 3D shape (i.e., not a planar
scene) and the number of the detected laser curves are sufficiently
large and all of them are “connected” (i.e., not divided into multiple
sets that are not connected with each other), then, our experience
suggests that the assumption of 4-DOF indeterminacy is fulfilled in
most of the cases.

2 This method is also effective for removing laser curve generated by a laser plane
that includes the optical center of the camera, which violates the assumption of the
planes described in Section 4, because a laser curve generated by such a plane
becomes a straight line in captured images.

(b)

Fig. 4. Examples of solutions having more than 4-DOF indeterminacy.

Even if the above method is used, degenerate conditions may
occur, in case of, for example, Fig. 4(b). Such cases can be detected
by observing the rank of matrix L. If the rank of L is less than
3N — 4, we can just estimate more unknown parameters at the
metric reconstruction step using the non-linear method. Thus, it
does not severely affect the result.

If L is generated from a real data, the rank of the matrix with no
degenerate condition does not becomes 3N — 4 rigorously because
of the observation errors, as described after Eq. (10). To detect
degenerate conditions from a real data, counting singular values
of L that are less than a threshold is one practical solution.’

5. Metric reconstruction
As described in the previous section, the solutions of the plane

parameters a;, j=1,...,N of the form (10) have 4-DOF indetermi-
nacy which include 1-DOF indeterminacy of scaling. Moreover, if

any of the intrinsic parameters are unknown, a;, j=1,...,N in-
clude variables of the parameters which cause additional
indeterminacy.

These indeterminacies cannot be reduced using coplanarities. If
metric constraints are available, we may reduce the indetermina-
cies using these constraints. For example, if only the focal length
is unknown within the intrinsic parameters, and if we need the
shape of the scene up to scale from orthogonalities in the scene,*
the number of required metric constraints is at least 4 + 1 (number
of DOF for focal Ilength)—1 (number of DOF for
scaling)=4+1-1=4.

5.1. Linear method

If we have many (at least nine) orthogonalities between planes
as metric constraints, it is possible to achieve metric reconstruc-
tion up to scale estimating all the intrinsic parameters using a lin-
ear method. From the definition in Eq. (4), a;" = ajTl(’l. Thus, the
plane parameter a; in the Euclidean space can be represented as

3 How to determine a good threshold is one of the future works. In actual cases, the
number of optimized parameters of non-linear optimization can be larger than the
actual number of free parameters. Although there are costs of a wider search space
and requiring more metric conditions (metric conditions are described in Section 5),
correct solution can be obtained even if a larger number of parameters are optimized.
Thus, one approach for this problem may be using a large threshold.

4 The kind of indeterminacies that are reducible depends on the kind of metric
constraints. For example, indeterminacy of scaling is not reducible using orthogo-
nalities or parallelisms in the scene.
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.
a —a’K-= (sa}—s—b) K, j=L....N (14)

using an arbitrary scalar s and an arbitrary 3D vector b. The scalar s
corresponds to scaling in the Euclidean space, which cannot be
determined from only orthogonalities of planes in principle. So,
s=1 is assumed. Then, the condition of orthogonality between ;
and 7, can be represented as

’
k

bTK]

1
ajac= (a7 +b KK (@, +b) = 1] { | KBK] L }

1
_ T _
~[1a ]QLJ -0 (15)
where Q is a 4 x 4 symmetric matrix defined as

b'K| 0 ot b'’KK'b b'KK'
= K'bK'| = . 16
Q [ K }[ } KK'b  KK' (16)

The form (15) can be regarded as a linear equation with respect to
the elements of Q. Considering that Q is a 4 x 4 symmetric matrix
which has ten distinct elements and that the right-bottom element
of Q is always 1, nine elements should be determined (note that this
number of unknown elements (=9) equals to the sum of the number
of unknown elements of K (=5) and the number of unknown param-
eters of a generalized projective bas-relief transformation (=4)). If
we have nine independent conditions of orthogonalities, we can
determine Q. Since the right-bottom 3 x 3 submatrix of Q is KK,
K can be determined by Cholesky factorization of the submatrix.
Once K is determined, b can be calculated by b = (KK")"'q, where
q is the left-bottom 3 x 1 submatrix of Q.

5.2. Non-linear method

The linear method described in Section 5.1 can be used without
initial solutions, however, it can be applied only if at least nine
orthogonalities between laser/explicit planes are available. Even
if it is true, these conditions are often dependent or nearly depen-
dent with each other. In these cases, the linear method tends to be
unstable.

In real situations, some or all of the intrinsic parameters may be
known. In these cases, it is often effective to achieve metric recon-
struction by minimization of an error function that is defined to
have the minimum value if the metric constraints are fulfilled. In
the proposed method, the plane parameter a; in the Euclidean
space is described using a set of unknown parameters of the intrin-
sic parameters, which is represented as @, and variables s and b of
the form (10). Let this representation be described as aj@,s,b).
Then, for example, if we have a set of conditions of orthogonalities
from the scene, which is represented as a set of pairs of indices of
planes that are orthogonal, C, = {(i,j)|(7; L 7;)}, we can define an er-
ror function E(b, @) as
E(b,0)= ) cos’0;;(b,1,0)

(ij)eCy
= > {N@(b,1,0))'N(@(b,1,0))}", (17)
(ij)eCy
where 0;;(©,s,b) is the angle between the planes 7; and 7, and N( )
means normalization of a vector. E(b, ®) does not have s as an argu-
ment because the scaling cannot be determined from only orthogo-
nalities. Using the error function, we can obtain estimations of b
and @, which are depicted as b and 0, by solving the non-linear
optimization problem of

(b.6) = argminE(b, 6). (18)

Achieving metric reconstruction using non-linear optimization has
an advantage that the kinds of usable metric constraints can be eas-

ily increased by representing new constraints as error functions. For
example, if parallelisms of planes are available as a set C, = {(ij)|m;
and 7 are parallel} in addition to orthogonalities of planes, the error
function can be defined as

Eb,0)= Y cos?0i(b,1,0)+ > sin’0;(b,1,0)
(ij)eCy (ij)eCp
= ) {N(a(b,1,0))'N(a;(b,1,0))}*
(ij)eCy
+ )" [N(@i(b,1,0)) x N(a;(h, 1,0))|*. (19)

(i)€Cp

Other types of metric constraints can be used as long as they can be
represented as an equation described by using b, s, ®, or constant
values.

Many methods have been proposed for non-linear optimization.
We used an implementation of Levenberg-Marquardt method in
the experiments described later.

For non-linear optimization, determining initial values is some-
times a problem. In the experiments, orthogonal projections of
planes with manually entered parameters into the solution spaces
of the form (10), which can be represented as 3N-dimensional lin-
ear spaces, were calculated, and the projections were used as the
initial solutions.

6. Dense 3D shape reconstruction

The above-mentioned method is only applied to selected laser
curves, and results in a sparse 3D reconstruction. In order to obtain
a dense 3D shape, we need to reconstruct all the laser curves
(dense reconstruction). To achieve this, we first estimate the
parameters of each selected laser plane, and then reconstruct all
the 3D points on the selected laser curves by applying triangula-
tion. This triangulation can be conducted by calculating the inter-
section between the laser plane and the line of sight which goes
through the point on a detected laser curves as shown in Fig. 5.
This method is generally called a light-section method. The actual
process of the dense reconstruction is as follows:

Step 1 Up to this point, only the laser plane parameters of the
selected frames are estimated using the aforementioned
method. Thus, recover all the 3D positions of the points
on the laser curves by using the estimated plane parame-
ters and a light-section method.

Step 2 Detect the intersections between a laser curve on an arbi-
trary frame and the selected laser curves that have
already been reconstructed in step 1.

Point on detected
laser curve

Plane on
laser sheet

Fig. 5. Light-section method.
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Step 3 Estimate the plane parameters of the laser curve on the
frame processed in step 2 by fitting the intersection
points to a plane by using principal components analysis.

Step 4 Recover all the 3D positions of the points on the laser curve
by using the estimated plane parameters from step 3.

Step 5 Iterate steps 2—4 for all the frames until all the detected
laser curves are reconstructed.

7. Experiments

7.1. Reconstruction from implicit coplanarities in a CG synthesized
scene

We performed an experiment on the reconstruction of general
scenes from the laser curves observed by a camera. To obtain the
metric constraints, we assumed a laser projector composed of
two line lasers, whose laser planes are configured to be perpendic-
ular as described in Section 3. Using the device, the scene can be
reconstructed without any metric constraints from the scene itself.
In the experiments, the metric constraints are solved by both the
linear method described in Section 5.1 and the non-linear method
described in Section 5.2. For the non-linear method, we used the
Levenberg-Marquardt method for optimizations. All the algo-
rithms were implemented using C++ programming language.

Fig. 6(a) shows the data synthesized using CG. The purpose of
this experiment was validating the reconstruction algorithms

(2)

themselves, and not validating the steps for extracting intersection
points. Thus, the laser curves are rendered to CG images as borders
between black and white regions as shown in Fig. 6(b) and the
curves are extracted in sub-pixel accuracy using marching squares
algorithm (2D version of marching cubes algorithm). The size of
the CG image was 800 x 600.

The scene shows a model of a rabbit. For this scene, the cross-
sections of the laser planes and the model were rendered for vari-
ous positions of the laser projector. The borders of the black and
white patterns on the scene represent the cross-sections. The
images are taken 20 times, and 40 laser planes exist in the scene.
The metric constraints are 20 orthogonalities between the planes.

For the experiment of linear method, all the intrinsic parame-
ters («, B, 0,p, and p,) were estimated. For the non-linear method,
we assumed o/ =1, p,=p,=0 for the intrinsic parameters and
estimated the value of o. To obtain the initial solution for the
non-linear optimization, all the planes were manually classified
into four categories based on their normal directions, and the ini-
tial parameters for each plane are decided based only on the cate-
gories. For example, the initial solutions of the planes of the
“downward” category were decided as z=0x+ 1y — 1. Then, the
metric reconstruction was calculated as described in Section 5.2.
For the reconstruction, 588 intersection points were used. For the
reconstruction, 588 intersection points were detected by calculat-
ing intersections between the laser curves with sub-pixel accuracy.
The processing time for the projective reconstruction was 0.047 s

Fig. 6. Reconstruction of a CG-synthesized scene: (a) the laser curves, (b) a example of laser curve rendered in CG image, (c)-(f) the result of linear method, and (g)-(j) the
result of non-linear method. (e), (f), (i) and (j) are zoomed-in views of one of the ears and the bottom. In (c)-(j), the dark curves or points are the reconstructed laser curves

and the shaded surfaces are the ground truth models.
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(it does not include the time for extracting intersection points). The
processing times for non-linear and linear method for metric
reconstruction were 0.015s and 0.016 s, respectively. These pro-
cessing time were measured on a PC with a Pentium Xeon
3.8 GHz CPU. The same system was used for all the following
experiments.

Since the scaling factor cannot be solved, we scaled the solution
using the ground truth solution for evaluation. Fig. 6(b)-(e) shows
the scaled solution of the linear method (the estimated laser
curves) with the shaded ground truth model, and (f)-(i) show that
of the non-linear method. The figures show that the result of the
non-linear method is better than that of the linear method. A part
of the reason is that the linear method also estimates the camera
model, which is not estimated in the non-linear method. By the
linear method, («,o/B,0,pu,py) Were calculated to be (7.560 x
10%,0.999570,0.808, —3.57,—2.15), whereas their true values were
(7.464 x 10%,1,0,0,0). The units of p, and p, were pixels and the
size of the image was 600 x 400. By the non-linear method, o
was calculated to be 7.467 x 10%. To estimate the error of the
reconstruction quantitatively, we calculated the RMS error of the
z-coordinates of all the reconstructed points where the average
of the z-coordinates of the points was scaled to 1.0 (i.e., normalized
by the average of the z-coordinates). The RMS error was
7.543 x 1072 for the linear method and 4.822 x 10~> for the non-
linear method.

@

7.2. Reconstruction from implicit coplanarities in real scenes

To conduct experiments for a real object, we use a system con-
sisting of a line laser projector and a video camera as described in
Section 3.

In the first experiment, we used the single-laser configuration.
We selected 20 images from a captured image sequence and recon-
structed the 3D shape. There were two rectangular boxes in the
target scene as shown in Fig. 7(a). Fig. 7(b) shows an example of
the selected images. From the images, the laser curves captured
by the camera were extracted, and the regions of 6 faces of the
boxes were also extracted as explicit planes manually. Detection
of laser curves was conducted by thresholding the pixel values of
the red channel and the green channel. Then, pixels that were
shared by multiple laser curves were detected. Since laser curves
were not skeletonized, each of the intersection points corre-
sponded to multiple pixels. Thus, each of the connected regions
was extracted as an intersection point, whose position was calcu-
lated as the center of gravity of the region. For projective recon-
struction, 151 intersection points were wused and 13
orthogonalities between the explicit planes were used for metric
reconstruction. 101,339 points were reconstructed in the dense
reconstruction process. Fig. 7(c)-(f) shows the extracted laser
curves and the reconstruction results. The processing time was
0.015 s for projective reconstruction, 0.016 s for metric reconstruc-

(h)

Fig. 7. Reconstruction of the real scene: (a) the target scene, (b) the laser curves, (c) extracted reflections (red curves) and explicit coplanarities (blue lines); (d)-(f)
reconstructed scene of line-lasers; and (g) and (h) dense reconstruction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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tion, and 0.62 s for dense reconstruction for 3900 frames. We can
clearly see that the orthogonalities of the rectangular box and
the parallelisms of the edges were successfully reconstructed.
Fig. 7(g) and (h) shows the dense 3D reconstruction result. We
can confirm that a dense reconstruction was successfully achieved.

Next, we used a laser projecting device that emits two laser
planes that are orthogonal with each other (the crosshair-laser
configuration). In this case, no metric constraints were required
from the scene. We selected 23 images and reconstructed the 3D
shape. We also conducted a dense reconstruction. Image process-
ing for detecting the laser curves and the intersection points were
the same as the previous experiment. Fig. 8(a)-(g) shows all the in-
puts and results. We used 43 laser curves (3 lines were removed
because intersection points on each of those lines were collinear
as described in Section 4.1) with 975 intersection points for projec-
tive reconstruction, and used 20 orthogonalities for metric recon-
struction. 213,437 points were reconstructed in the dense
reconstruction process. The processing time was 0.078 s for projec-
tive reconstruction and 0.016 s for metric reconstruction, and
0.37 s for dense reconstruction for 2160 frames. We can see that
an arbitrary shape was successfully reconstructed.

About the overall processing time for the system, the image
capturing process takes about 1 min. For the single-laser configura-

tion, it takes about several minutes to manually input information
of explicit planes (drawing curves on regions as Fig. 3 and specify-
ing metric constraints such as orthogonalities). Specifying initial
estimations of the planes also takes several minutes. Thus the total
processing time is about 10-20 min.

For the crosshair-laser configuration, specifying explicit planes
are not needed. For such a system, it is also possible to give initial
estimations of the planes by limiting the pose of the laser-project-
ing device while capturing by displaying “hints” of how to wave
the laser projecting device. In this case, the system can reconstruct
3D shape online.

Next, an example of detection of a degenerate condition of
Fig. 4 is shown. Fig. 9(a) shows a scene with a rectangular
box, and (b) and (c) show images with laser curves generated
by a projector with the crosshair-laser configuration. Because
one of the laser curves in Fig. 9(c) existed mostly on a planar
region, intersection points on the curve became nearly collinear.
This caused a degenerate condition and reconstruction failed to
produce an almost flat shape when this laser curve was in-
cluded in the data. However, this curve could be detected by
principal component analysis that is described in Section 4.1.
By removing the curve, reconstruction succeeded as shown in
Fig. 9(e) and (f).

Fig. 8. Another result of real scene reconstruction with the crosshair-laser configuration.
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(e)

(f)

Fig. 9. An example of detection of degenerate conditions: (a) the target scene, (b) a captured image, (c) a captured image that causes a degenerate condition, (d) accumulated
laser curves, and (e) and (f) the side and top views of the reconstructed points (sparse curves).

7.3. Reconstruction from single images

To confirm that the proposed method can be applied for single
view reconstruction without implicit coplanarities, we reconstruct
3D shapes of two scenes. The first one includes the metric con-
straints assumed in conventional reconstruction methods, such
as pairs of vanishing points whose directions are perpendicular.
The second one does not include such specific constraints.

Fig. 10(a) shows the image used in the first experiment. The
camera parameters of this image was unknown. From the scene,
we extracted coplanarities and orthogonalities. The scene recon-
struction and estimation of the intrinsic parameters were per-
formed for the image. The Euclidean reconstruction was
performed assuming o=p, ¢ =0, p,=p,=0. The reconstruction
was performed up to scale. Fig. 10(b) and (c) shows the result of
the Euclidean reconstruction. The 3D scene was properly recon-
structed, including the orthogonalities and parallelisms.

Next, we synthesized and reconstructed a CG image of a scene
that included two columns as shown in Fig. 11(a), and the recon-
struction was performed for the image. The shapes of the columns
are long rectangular boxes. The tops of these boxes are invisible
and the bottoms are occluded by the floor. By using vertices
A,B,..., and R shown in Fig. 11(a), the projective reconstruction

of the five planes of the scene (the floor and the 4 faces of the 2 col-
umns) were obtained.

There are two parallelisms in the scene, but the angle between
the directions of the parallel lines is unknown. Moreover, neither
rectangular boxes nor parallelepiped shapes exist in the scene.
Therefore, reconstruction methods that assume such features are
not applicable for this scene. However, the scene does include a
sufficient number of metric constraints such as two orthogonalities
of the planes of the columns (orthogonalities between faces ABKJ
and BCLK, and between faces DEHG and EFIH), two known ratios
of the short edges (dy/d, = d4/d3 = 1.3, where d;, d5, d3 and d,4 are
the distances between lines AJ and BK, between lines BK and CL, be-
tween lines DG and EH, and between lines EH and FI, respectively),
and two parallelisms along the two columns (parallelisms between
lines AJ, BK and CL, and between lines DG, EH and FI); thus, our
method is applicable. We performed Euclidean reconstruction up
to scale and estimated «, assuming o = 8, ¢ =0, p, = p, = 0. The re-
sult of the reconstruction is shown in Fig. 11(b)-(e). o« was calcu-
lated to be 1.101 x 103, whereas its true value is 1.120 x 10°. We
can see that the scene was properly reconstructed and o was cor-
rectly estimated. The RMS of the error ratio of the reconstructed
points calculated in the same way as the previous experiment
was 1.990 x 1073,
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Fig. 10. Reconstruction from a single image: (a) the target image, (b) front and side view of the reconstructed model, and (c) the textured model.

8. Conclusion

In this paper, we have proposed a novel 3D reconstruction
method that utilizes both the coplanarities of points and metric
constraints (e.g., parallelisms and orthogonalities of planes) simul-

(d) ()

Fig. 11. Reconstruction from the synthetic data: (a) the target scene, (b) the actual
3D model, (c) the reconstructed model rendered from the same view point and
direction of (b), and (d) and (e) differences between the actual 3D model and the
estimated 3D points.

taneously. Since our method uses both implicit and explicit coplan-
arities obtained from the laser curves and the planar regions,
scenes with complicated and curved surfaces can be densely recon-
structed by using a line laser projector. For obtaining a solution, we
first obtain a projective reconstruction by solving the linear equa-
tions that are derived from the coplanarity constraints. Then, to
upgrade the projective solution to the Euclidean space and esti-
mate the camera intrinsic parameters, we solve linear or non-lin-
ear equations formulated from the metric constraints. The linear
formulation can be solved using linear algebra, and the non-linear
formulation can be solved using an optimization method.

In order to verify the reliability and effectiveness of the pro-
posed methods, we conducted a simulation and an actual 3D
reconstruction. The results of our experiments confirmed the effec-
tiveness of the proposed method.
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