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Abstract. To date, various techniques of shape reconstruction using cast shad-
ows have been proposed. The techniques have the advantage that they can be
applied to various scenes including outdoor scenes without using special devices.
Previously proposed techniques usually require calibration of camera parameters
and light source positions, and such calibration processes make the application
ranges limited. If a shape can be reconstructed even when these values are un-
known, the technique can be used to wider range of applications. In this paper,
we propose a method to realize such a technique by constructing simultaneous
equations from coplanarities and metric constraints , which are observed by cast
shadows of straight edges and visible planes in the scenes, and solving them. We
conducted experiments using simulated and real images to verify the technique.

1 Introduction

To date, various techniques of scene shape reconstruction using shadows have been
proposed. One of the advantages of using shadows is that the information for 3D recon-
struction can be acquired without using special devices, since shadows exist wherever
light is present. For example, these techniques are applicable to outdoor poles on a
sunny day or indoor objects under a room light. Another advantage of shape recon-
struction using shadows is that only a single camera is required.

So far, most previously proposed methods assumed known light source positions
because, if they are unknown, there are ambiguities on the solution and Euclidean re-
construction can not be achieved[1]. If a shape can be reconstructed with unknown light
source positions, the technique can be used to wider applications. For example, a scene
captured by a remote web camera under unknown lighting environments could be re-
constructed. Since intrinsic parameters of a remote camera are usually unknown, if the
focal length of the camera can be estimated at the same time, the application becomes
more useful. In this paper, we propose a method to achieve this. Our technique is ac-
tually more general,i.e. both the object that casts shadows and the light source can
be freely moved while scanning because both of their positions are not required to be
known and static. This is a great advantage for actual scanning processes, since the un-
measured area caused by self-shadows can be drastically reduced by moving the light
source.



To actually realize the technique, we propose a novel formulation of simultaneous
linear equations from planes created by shadows of straight edges (shadow planes) and
the real planes in the scene , which are extension of the previous studies for shape
from planes [?,?] and interpretation of line drawings of polyhedrons [2]. Since shadow
planes and the real planes are treated equally in our formulation, various geometrical
constraints among the planes can be utilized efficiently for Euclidean upgrade and cam-
era calibration.

In this paper, we assume two typical situations to reconstruct the scene. The first
one, which we call“shadows of the static object”, assumes a fixed camera position, a
static scene, and a static object of a straight edge which casts a moving shadow as the
light source(e.g.the sun or a point light) moves. The second one, which we call“active
scan by cast shadow”, assumes a fixed camera, and arbitrary motion of both a light
source and an object with a straight edge to generate shadows to conduct an active scan.

2 Related work

3D reconstruction using information of shadows has a long history. Shaferet al. pre-
sented the mathematical formulation of shadow geometries and derived constraints for
surface orientation from shadow boundaries [3]. Hambricket al.proposed a method for
classifying boundaries of shadow regions [4]. Several methods for recovering 3D shapes
up to Euclidean reconstruction based on geometrical constraints of cast-shadows have
been proposed [5,6,7,8]. All of these methods assumes that the object that casts shadows
are static and the light directions or positions are known.

On the other hand, Bouguetet al.proposed a method which allowed users to move a
straight edged object freely so that the shadow generated by a fixed light source sweep
the object [9,10]. However, the technique requires calibration of camera parameters, a
light source position, and a reference plane.

If an Euclidean shape can be reconstructed with unknown light source positions, it
may broaden the application of “shape from cast shadow” techniques. However, it was
proved that scene reconstructions based on binary shadow regions have ambiguities of
four degrees of freedom (DOFs), if the light positions are unknown [1]. In the case
of a perspective camera, these ambiguities correspond to the family of transformations
called generalized projective bas relief (GPBR) transformations.

To deal with unknown light source positions, Caspiet al.proposed a method using
two straight, parallel and fixed objects to cast shadows and a reference plane (e.g.the
ground) [11]. To solve ambiguities caused by unknown light sources, they used paral-
lelisms of shadows of straight edges by detecting vanishing points. Compared to their
work, our method is more general. For example, in our method, camera can be partially
calibrated, the straight object and the light source can be moved, the light source can
be a parallel or point light source, and wider types of constraints than parallelisms of
shadows can be used to resolve the ambiguities.
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(a) (b) (c) (d)

Fig. 1. Coplanarities in a scene:(a) Explicit coplanarities. Regions of each color except
for white are a set of coplanar points. Note that points on a region of a curved surface
are not coplanar. (b) Implicit coplanarities. Segmented lines of each color are a set
of coplanar points. (c)Examples of metric constraints:π0⊥π1 and π0⊥π2 if λ⊥π0.
π3⊥π4, π4⊥π5, π3⊥π5, andπ3 ∥ π0 if box B is rectangular and onπ0. (d) Intersections
between explicit coplanar curves and implicit coplanar curves in a scene. Lines of each
color corresponds a plane in the scene.

3 Shape Reconstruction from Cast Shadow

If a set of points exist on the same plane, they are coplanar as shown in figure1(a). All
the points on a plane are coplanar even if the plane does not have textures or feature
points. A scene composed of plane structures has many coplanarities. In this paper, a
coplanarity that is actually observed as a real plane in the scene is called as anexplicit
coplanarity.

As opposed to this, in a 3D space, there exist an infinite number of coplanarities
that are not explicitly observed in ordinary situations, but could be observed under spe-
cific conditions. For example, a boundary of a cast-shadow of a straight edge is a set of
coplanar points as shown in figure1(b). This kind of coplanarity is not visible until the
shadow is cast on the scene. In this paper, we call these coplanarities asimplicit copla-
narities. Implicit coplanarities can be observed in various situations, such as the case
that buildings with straight edges are under the sun and cast shadows onto the scene.
Although explicit coplanarities are observed only for limited parts of the scene, implicit
coplanarities can be observed on arbitrary-shaped surfaces including free curves.

In this study, we create linear equations from the implicit coplanarities of the shad-
ows and explicit coplanarities of the planes. By solving the acquired simultaneous
equations, a scene can be reconstructed, except for four (or more) DOFs that simul-
taneous equations have, and also the DOFs corresponding to unknown camera param-
eters. For an Euclidean reconstruction from the solution, the remaining DOFs should
be solved (calledmetric reconstructionin this paper). To achieve this, constraints other
than coplanarities should be used. For many scenes, especially those that include arti-
ficial objects, we can find geometrical constraints among explicit and implicit planes.
Examples of such information are explained here.

(1) In figure1(c), the ground is planeπ0, and linear objectλ is standing vertically
on the ground. If the planes corresponding shadows ofλ areπ1 andπ2, π0⊥π1,π0⊥π2

can be derived fromλ⊥π0.
(2) In the same figure, the sides of boxB areπ3,π4, andπ5. If boxB is rectangular,

π3,π4, andπ5 are orthogonal with each other. If boxB is on the ground,π3 is parallel
to π0.



From constraints available from the scene such as above examples we can determine
variables for the remaining DOFs and achieve metric reconstruction. With enough con-
straints, the camera parameters can be estimated at the same time. We call these con-
straints themetric constraints.

Based on this, actual flow of the algorithms are as follows.
Step 1: Extraction of coplanarities. From a series of images that are acquired from

a scene with shadows captured by a fixed camera, shadow boundaries are extracted
as implicit-coplanar curves. If the scene has plane areas, explicit-coplanar points are
sampled from the area. For the efficient processing of steps 2 and 3 below, only selected
frames are processed.

Step 2: Cast shadow reconstruction by shape from coplanarities.From a dataset
of coplanarities, constraints are acquired as linear equations. By numerically solving the
simultaneous equations, a space of solutions with four (or more) DOFs can be acquired.

Step 3: Metric reconstruction by metric constraints. To achieve metric recon-
struction, an upgrade process of the solution of step 2 is required. The solution can be
upgraded by solving the metric constraints.

Step 4: Dense shape reconstruction.The processes in steps 2 and 3 are performed
on selected frames. To realize dense shape reconstruction of a scene, implicit-coplanar
curves from all the images are used to reconstruct 3D shapes using the results of the
preceding processes.

4 Algorithm details for each steps

4.1 Data acquisition

To detect coplanarities in a scene, the boundaries of cast shadows are required. Au-
tomatic extraction of a shadow area from a scene is not easy. However, since shadow
extraction has been studied for a long period of time [12,13], many techniques are al-
ready proposed and we adopt a spatio-temporal based method as follows:

1. Images are captured from a fixed camera at fixed intervals, and a spatio-temporal
image is created by stacking images after background subtraction.

2. The spatio-temporal image is divided by using 3D segmentation. The 3D segmenta-
tion has been achieved by applying a region growing method to the spatio-temporal
space. To deal with noises on real images, we merge small regions to the surround-
ing regions and split a large region connected by a small region into two.

3. From the segmented regions, shadow regions are selected interactively by manual.
Also, if wrong regions are produced by the automatic process, those regions are
modified manually in this step.

4. The segmented regions are again divided into frames, and coplanar shadow curves
are extracted from each frames as boundaries of divided regions.

By drawing all the detected boundaries on a single image, we can acquire many
intersections. Since one intersection shares at least two planes, we can construct si-
multaneous equations. The numerical solution of these equations is explained in the
following section.



4.2 Projective reconstruction

Suppose a set ofN planes including both implicit and explicit planes. Letj-th plane of
the set beπj . We express the planeπj by the form

ajx + bjy + cjz + 1 = 0 (1)

in the camera coordinates system.
Suppose a set of points such that each point of the set exists on intersections of

multiple planes. Let thei-th element of the set be represented asξi and exist on the
intersection ofπj andπk. Let the coordinates(ui, vi) be the location of the projection
of ξi onto the image plane. We represent the camera intrinsic parameter byα = p/f ,
wheref is the focal length andp is the size of the pixel. We definea∗

j = αaj and
b∗j = αbj . The direction vector of the line of sight from the camera to the pointξi is
(αui, αvi,−1). Thus,

aj(−αuizi) + bj(−αvizi) + cj(zi) + 1 = 0, (2)

wherezi is thez-coordinate ofξi. By dividing the form byzi and using the substitutions
of ti = 1/zi, a∗

j = αaj , andb∗j = αbj , we get

− (ui)a∗
j − (vi)b∗j + cj + ti = 0. (3)

Sinceξi is also onπk,

− (ui)a∗
k − (vi)b∗k + ck + ti = 0. (4)

From the equations (3) and (4), the following simultaneous equations with variables
a∗

j ,b∗j andcj can be obtained:

(a∗
j − a∗

k)ui + (b∗j − b∗k)vi + (cj − ck) = 0. (5)

We defineL as the coefficient matrix of the above simultaneous equations, andx as
the solution vector. Then, the equations can be described by a matrix form as

Lx = 0. (6)

Simultaneous equations of forms (5) have trivial equations that satisfy

a∗
j = a∗

k, b∗j = b∗k, cj = ck, (i ̸= j). (7)

Let x1 be the solution ofa∗
i = 1, b∗i = 0, ci = 0(i = 1, 2, . . .), x2 be the solution of

a∗
i = 0, b∗i = 1, ci = 0, andx3 be the solution ofa∗

i = 0, b∗i = 0, ci = 1. Then, the
above trivial solutions form a linear space spanned by the bases ofx1,x2,x3, which we
represent asT .

We describe a numerical solution of the simultaneous equations assuming the ob-
served coordinates(ui, vi) on the image plane include errors. Since the equation (6)
is over-constrained, the equation generally cannot be fulfilled completely. Therefore,
we consider then-dimensional linear spaceSn spanned by then eigenvectors ofL⊤L
associated with then minimum eigenvalues. Then,Sn becomes the solution space ofx
such thatmaxx∈Sn |Lx|/|x| is the minimum with respect to all possiblen-dimensional
linear spaces.



Even if coordinates ofui, vi are perturbed by additive errors,x1,x2,x3 remain triv-
ial solutions that completely satisfies equations(5) within the precision of floating point
calculations. Thus, normally, the 3D spaceS3 becomes equivalent with the space of triv-
ial solutionsT . For non-trivial solution, we can definexs = argminx∈T⊥(|Lx|/|x|)2,
whereT⊥ is the orthogonal complement space ofT . xs is the solution that minimizes
|Lx|/|x| and is orthogonal tox1,x2 andx3. SinceT andS3 are normally equal,xs can
be calculated as the eigenvector ofL⊤L associated with the 4-th minimum eigenvalue.

Thus, the general form of the non-trivial solutions are represented as

x = f1x1 + f2x2 + f3x3 + f4xs = Mf , (8)

wheref1, f2, f3, f4 are free variables,f is a vector of(f1 f2 f3 f4)⊤, andM is a
matrix of (x1 x2 x3 xs). The four DOFs of the general solution basically correspond to
the DOFs of generalized projective bas-relief (GPBR) transformations described in the
work of Kriegmanet al. [1].

As far as we know, there are no previous studies that reconstruct 3D scenes by
using the linear equations from the 3-DOF implicit and explicit planes. Advantages
of this formulation are that the solution can be obtained stably, and the wide range of
geometrical constraints can be used as metric constraints.

4.3 Metric reconstruction

The solution obtained in the previous section has four DOFs fromf . In addition, if
camera parameters are unknown, additional DOFs should be resolved to achieve metric
reconstruction. Since these DOFs cannot be solved using coplanarities, they should be
solved using metric constraints derived from the geometrical constraints in the scene.

For example, suppose that the orthogonality between the planesπs andπt is as-
sumed. We denote the unit normal vector of planeπs as a vector functionns(f , α) =
N((as(f , α) bs(f , α) cs(f , α))⊤) whose parameters aref and the camera parameterα,
whereN() means an operation of normalization. Then, the orthogonality betweenπs

andπt can be expressed as

{(ns(f , α)}⊤{nt(f , α)} = 0. (9)

Other types of geometrical constraints such as parallelisms can be easily formulated
using the similar method.

To solve the equations described above, non-linear optimization with respect tof
andα can be used. We implemented the numerical solver using Levenberg-Marquardt
method. The determination of the initial value off may be a problem. In the experi-
ments described in this study, we construct a solution vectorxI from the given plane
parameters andfI = M⊤xI is used as the initial values off . In this method,fI is the
projection ofxI in the space of the plane parameters whose dimension is3N , onto the
solution space of the projective reconstruction (8) such that the metric distance between
fI andxI is minimum. Using this process, we can obtain a set of plane parameters
which fulfills the coplanarity conditions for an arbitrary set of plane parameters.



(a) (b) (c) (d)

Fig. 2. Reconstruction of simulation data:(a)(b) input images with shadows and (c)(d)
reconstruction results. In the results, the shaded surfaces are ground truth and the red
points are reconstructed points.

4.4 Dense reconstruction

To obtain a dense 3D shape, we also conduct a dense 3D reconstruction by using all the
captured frames. The actual processes are as follows.

1. Detect the intersections between a implicit-coplanar curve on an arbitrary frame
and the curves of the already estimated planes.

2. Estimate the parameters of the plane of the implicit-coplanar curve by fitting it to
the known 3D points, which are retrieved from the intersections, using principal
components analysis (PCA).

3. Recover all the 3D positions of the points on the implicit-coplanar curve by using
the estimated plane parameters and triangulation method.

4. Iterate 1 to 3 for all frames.

5 Experiments

5.1 Simulation data(shadow of static object)

Figures2 (a),(b) show data synthesized by CG including a square floor, a rabbit, and a
perpendicular wall. 160 images were generated while moving the light source, so that
the edge of the shadow scanned the rabbit. Simultaneous equations were created from
intersection points between the implicit-coplanar shadow curves and lines that were
drawn on the explicit planes. The initial value of nonlinear optimization was given to
indicate whether the light source was located on the right or left.

By using the coplanar information, the reconstruction could be done only up to
scale, so there were three DOFs remained. Since we also estimated the focal length, we
needed four metric constraints. For obtaining an Euclidean solution, we used two metric
constraints from the orthogonalities of the shadow planes and the floor, and other two
constraints from the orthogonalities of the two corners of the floor. Figures2 (c) and (d)
show the result (red points) and the ground truth (shaded surface). We can observe the
reconstruction result almost coincides with the correct shape. The RMS error (root of
mean squared error) of thez-coordinates of all the reconstructed points was2.6× 10−3

where the average distance from the camera to the bunny was scaled to 1.0. Thus, a
highly accurate reconstruction of the technique was confirmed.



(a) (b) (c) (d)

Fig. 3. Reconstruction of simulation data (active scanning): (a) an input image, (b) ex-
plicit and implicit coplanarities, and (c)(d) reconstruction results. In the results, the
shaded surfaces are ground truth and the red points are reconstructed points.

5.2 Simulation data(active scan by cast shadow)

Next, we attempted to reconstruct 3D shapes by sweeping the cast shadows on the
objects by moving both a light source and a straight objects. We synthesized a sequence
of images of the model of a bunny that includes 20 implicit coplanarities and three
visible planes (i.e.explicit planes). There are three metric constraints of orthogonalities
and parallelisms between the visible planes. The figure3(a) shows an example of the
synthesized images, and the figure3(b) shows all the implicit-coplanar curves as the
borders of the grid patterns. The figures3(c) and (d) show the result. The RMS error of
the z-coordinates of all the reconstructed points (normalized by the average of thez-
coordinates like the previous section) was4.6×10−3. We can confirm the high accuracy
of the result.

5.3 Real outdoor scene(shadow of static object)

We conducted a shape reconstruction from images acquired by outdoor fixed uncali-
brated cameras. Images from the camera installed outdoors were captured periodically
and a shape and the focal length of the camera was reconstructed by the proposed tech-
nique from shadows in the scene. Since the scene also contained many shadows gen-
erated by non-straight edges, the automatic extraction of complete shadows was diffi-
cult. In this experiment, these noises were eliminated by human interactions and it took
about 10 minutes for the actual working time. The figure4 (a) shows the input frame,
(b) shows the detected coplanar shadow curves, (c) shows all the coplanar curves and
their intersections, and (d) to (f) show the reconstruction result. The proposed technique
could correctly reconstruct the scene by using images from a fixed remote camera.

5.4 Real indoor scene(active scan by cast shadow)

We conducted an indoor experiment on an actual scene by using a point light source.
A video camera was directed toward a target object and multiple boxes and the scene
was captured while the light source and the bar for shadowing were being moved freely.
From the captured image sequence, several images were selected and the shadow curves
of the bar were detected from the images. By using the detected coplanar shadow
curves, we performed the 3D reconstruction up to 4 DOFs. For the metric reconstruc-
tion, orthogonalities of faces of the boxes were used. Figures5 show the capturing
scenes and the reconstruction result. In this case, since there were only small noises



(a) (b) (c)

(d) (e) (f)

Fig. 4. Reconstruction of outdoor scene: (a) input image, (b) an example frame of the
3D segmentation result, (c) implicit (green) and explicit (red) coplanar curves, (d) re-
constructed result of coplanar curves(red) and dense 3D points(shaded), and (e)(f) the
textured reconstructed scene.

extracted because of indoor environment, shadow detection was stable and no human
interaction was required. These results show that the dense shape is correctly recon-
structed.

We also reconstructed a scene of a box (size:0.4m× 0.3m× 0.3m) and a cylin-
der(height:0.2m, diameter:0.2m) to evaluate accuracies of the proposed method. The
process of reconstruction was conducted in the same way as the previous experiment,
except that we also measured the 3D scene by an active measurement method using
coded structured light [14] as the ground truth. The reconstruction result was scaled to
match the ground truth using the average distance to the points. Figures6 (a) and (b)
show the capturing scene, and (c) and (d) show both the scaled reconstruction (polygon
mesh) and the ground truth (red points). Although there were small differences between
the reconstruction and the ground truth, the shape was correctly recovered. The RMS
error of the reconstruction from the ground truth normalized by the average distance
was1.80 × 10−2.

6 Conclusion

This paper proposed a technique capable of reconstructing a shape if only multiple
shadows of straight linear objects or straight edges are available from a scene even
when the light source position is unknown and the camera is not calibrated. The tech-
nique is achieved by extending the conventional method, which is used to reconstruct
polyhedron from coplanar planes and its intersections, to general curved surfaces. Since
reconstruction from coplanarities can be solved up to four DOFs, we proposed a tech-
nique of upgrading it to the metric solution by adding metric constraints. For the stable



(a) (b) (c)

(d) (e) (f)

Fig. 5. Reconstruction of an indoor real scene: (a)(b) the captured frames, (c)(d) the
reconstructed coplanar shadow curves (red) with dense reconstructed model(shaded),
and (e)(f) the textured reconstructed model.

(a) (b) (c) (d)

Fig. 6.Reconstruction and evaluation of an indoor real scene: (a)(b) the captured frames
and (c)(d) the reconstructed model displayed with the ground truth data (shaded model:
reconstructed model, red points: ground truth).

extraction of shadow areas from a scene, we developed a spatio-temporal image pro-
cessing technique. By implementing the technique and conducting an experiment using
simulated and real images, accurate and dense shape reconstruction were verified.
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