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Abstract

3D acquisition techniques to measure dynamic scenes
and deformable objects with little texture are extensively
researched for applications like the motion capturing of hu-
man facial expression. To allow such measurement, sev-
eral techniques using structured light have been proposed.
These techniques can be largely categorized into two types.
The first involves techniques to temporally encode posi-
tional information of a projector’s pixels using multiple
projected patterns, and the second involves techniques to
spatially encode positional information into areas or color
spaces. Although the former allows dense reconstruction
with a sufficient number of patterns, it has difficulty in scan-
ning objects in rapid motion. The latter technique uses only
a single pattern, so this problem can be resolved, however,
it often uses complex patterns or color intensities, which
are weak to noise, shape distortions, or textures. Thus, it
remains an open problem to achieve dense and stable 3D
acquisition in real cases. In this paper, we propose a tech-
nique to achieve dense shape reconstruction that requires
only a single-frame image of a grid pattern. The proposed
technique also has the advantage of being robust in terms
of image processing.

1. Introduction

To measure 3D shapes of dynamic scenes or objects,
such as human facial expressions or body motions, speed,
density and accuracy of measurement are crucial. Since
passive stereo techniques have difficulty in reconstruct-
ing textureless surfaces densely and accurately, active 3D
measurement techniques, especially those using high-speed
structured light systems, have been extensively studied in
recent years for capturing dynamic scenes.

Many structured light systems temporally encode posi-
tional information of a projector’s pixel into multiple pat-
terns. Recently, structured light systems that can capture a
dynamic scene by reducing the required number of patterns
and increasing pattern speed have been proposed. These
systems assume that there is little motion in a scene while a

sufficient number of patterns for decoding are projected. In
addition, the design of high-speed synchronization system
is also an issue.

On the other hand, ‘one-shot’ structured light techniques
using only single images in which positional information of
the projectors’ pixels are embedded into spatial patterns of
the projected images have also been studied. Although the
techniques can resolve the issues of rapid motions and syn-
chronization, they typically use patterns of complex inten-
sities or colors to encode positional information into local
areas. Because of the complex patterns, they often require
assumptions of smooth surface or reflectance, and the im-
age processing tends to be difficult. If the assumptions do
not hold, the decoding process of the patterns may be easily
affected and leads to unstable reconstruction.

This paper presents a single scanning technique resolv-
ing the aforementioned problems . The proposed technique
uses a simple grid pattern formed by a number of straight
lines distinguishable only as vertical or horizontal lines so
that image processing is simple and stable. In addition,
there is no need to encode particular information for the lo-
cal grid pattern itself, so the pattern can be dense as long as
the lines are extractable. Generally, a shape cannot be re-
constructed from such a pattern. Thus, a new technique that
reconstructs the grid pattern using coplanarity constraints
is presented. The technique simultaneously decodes posi-
tional information of all the grid points that are connected,
using constraints on coplanarity obtained from the positions
of the grid points and the connectivity between them.

The proposed technique allows efficient and robust pro-
cessing because it requires only local information of con-
nectivity between adjacent grid points. In addition, it has
the advantages of the shape not necessarily needing to be
globally smooth as long as the local connectivity of the grid
points can be extracted and thus allows the shape to be re-
stored even when there are abrupt changes in depth due to
an occlusion or in color due to texture. Moreover, decoding
of the grid pattern can be achieved by a one-dimensional
search, providing high-speed shape reconstruction.

1



2. Related works

Shape reconstruction techniques with a structured light
system, which encode positional information of a projec-
tor into temporal or spatial changes in a projected pattern,
have been largely investigated and summarized in [15, 1].
A technique using only temporal changes is easy to imple-
ment, so it has commonly been used thus far [3, 8, 2]. Since
the technique uses multiple patterns necessary for decod-
ing, it requires special attention to be applied to high-speed
capturing.

Techniques using only spatial encoding of a pattern al-
low scanning with only a single-frame image [9, 12, 13].
They typically use complex patterns or colors for phase
unwrapping process and require assumptions of smooth or
continuous surface or assumptions of uniform or smooth re-
flectance, either locally or globally. If the assumptions do
not hold, the decoding process of the patterns may be easily
affected and leads to ambiguities near depth or color dis-
continuities.

Several research reducing the required number of pat-
terns using both temporal and spatial changes were pre-
sented [7, 15]. Although the technique is basically lim-
ited in that the scene must be static while multiple patterns
are projected, Hall-Holtet al. [7] proposed an enhanced
method to eliminate the limitation by aligning the recon-
structed shape with respect to a rigid body constraint. Davis
et al. proposed an efficient method to reduce patterns by us-
ing multiple cameras [15].

Although it does not strictly involve a structured light
system, methods of shape reconstruction to include move-
ment by spatio-temporal stereo matching are proposed [4,
16, 17]. With these techniques, a projector is only used to
provide a texture that changes over time for a pair of stereo
cameras to achieve high-quality depth reconstructions. All
the techniques require either spatial or temporal synchro-
nization.

Koninckx et al. proposed a technique allowing dense
shape reconstruction based on a single image using a simple
pattern,i.e. a set of stripes [10, 11]. This was achieved by
combining dense unidentified stripes and several identified
stripes. Their method depends on relative numbering of the
dense patterns, which assumes local smoothness of the sur-
face and may be disturbed by shape discontinuities and line
detection failures. To cope with these problems, they de-
veloped highly sophisticated line detection and correction
algorithms.

Furukawaet al. and Eckeret al. used multiple images
projected by an uncalibrated line laser to construct simulta-
neous linear equations and reconstructed a scene or shape
by solving them [6, 5]. Such equations are derived from
coplanar constraints of intersection points between tempo-
rally accumulated projected line-lasers. In this paper, a grid
pattern is projected onto the target scene and simultaneous
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Figure 1. Scanning system:(left) the system configuration, and
(right) the definition of the coordinates.

equations are constructed from the intersections of the lines
on the grid using the same formulation used in those works.
The projected lines are identified by solving the equations.
In the proposed method, no initial identification of the grid
lines are required and the lines can be dense as long as
they can be extractable to acquire high-resolutional shapes.
Unlike the previous ‘one-shot’ structured light techniques,
our technique does not assume smooth shape or uniform
reflectance of the surface and is robust against local discon-
tinuities of grid patterns. Therefore, the image processing
can be as simple as peak detection while vertical and hori-
zontal scanning.

3. Shape from grid pattern

3.1. System configuration

The 3D measurement system consists of a camera and a
projector as shown in Fig.1(left). The camera and the pro-
jector are assumed to be calibrated (i.e. the intrinsic param-
eters of the devices and their relative positions and orien-
tations are known). The projector pattern does not change,
so no synchronization is needed. A grid pattern of vertical
and horizontal lines is projected from the projector and cap-
tured by the camera. The vertical and horizontal lines are
assumed to be distinguishable. One way to achieve this is
by using different colors for the vertical and horizontal lines
and classifying them by color.

3.2. Problem definition

A straight line on the grid projected by the projector de-
fines a plane in 3D space. Planes defined by a vertical line
and a horizontal line are respectively referred to as a Vertical
Pattern Plane (VPP) and a Horizontal Pattern Plane (HPP) .

The projector is assumed to have been calibrated. That
is, all parameters for the VPPs and HPPs in 3D space are
known. A VPP and a HPP with known parameters are re-
ferred to as a Calibrated VPP (CVPP) and a Calibrated HPP
(CHPP), respectively. In addition, all CVPPs are assumed
to contain the same lineLv, as in the figure1(right). Simi-
larly, all CHPPs contain a lineLh. The intersection of these
two lines,Lv andLh, corresponds to the optical center of
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the projectorOp. The pointOp and the direction vectors for
Lv andLh are known by calibration.

A vertical line projected onto the scene produces a ob-
servable 3D curve on the surface of the scene, and the curve
is on the VPP defined by the line. In this paper, the 3D curve
is referred to as a Vertical Pattern Curve (VPC). A Horizon-
tal Pattern Curve (HPC) is defined in the same way. Inter-
sections between the VPCs and HPCs are extracted from
images captured by the camera. Here, these points are re-
ferred to as captured intersections. These intersections are
connected by the VPCs and HPCs and the connectivity is
extracted by image processing (Fig.2). Since the corre-
spondence from each VPC detected in the image to a par-
ticular CVPP is unknown, a VPP that contains a VPC is re-
ferred to as an Unknown VPP (UVPP). An Unknown HPP
(UHPP) is similarly defined.

The goal of the problem is to determine correspondences
between the UVPPs (UHPPs) and CVPPs (CHPPs) (other-
wise described as identifying UVPPs and UHPPs). As a re-
sult, 3D positions of all the captured intersections become
known. Multiple UVPPs may correspond to a single CVPP,
and the same assumption holds for UHPPs as well; this case
happens when, for example, a single CVPP generates mul-
tiple VPCs because of discontinuities.

A set of intersection points that are connected by VPCs
or HPCs are defined as “a linked set”. A linked set can
include discontinuities between adjacent grid points as long
as the two points are connected by a path of multiple VPCs
and HPCs as shown in Fig.3(left) and (right). By using this
term, all the captured intersections are divided into multiple
linked sets (e.g. two linked sets are observed in Fig.3(left)).
In the proposed method, the target set of intersections is
assumed to be contained in the same linked set. When there
are multiple linked sets, each can be reconstructed using
the same technique, so this assumption does not restrict the
generality of the solution.

3.3. Outline of the solution

Let the CVPPs obtained by calibration be repre-
sented asV1, V2, · · · , VM , CHPPs be represented as
H1,H2, · · · ,HN , respectively. Also, let the UVPPs and
UHPPs obtained from the captured image be represented

Captured image
Capturedintersections
linked sets

VPCs and HPCs Single linked set
Figure 3.Linked sets of captured intersections:(left) an example
of a linked set, and (right) an example of a linked set that include
discontinuity of the pattern.

asv1, v2, · · · , vm andh1, h2, · · · , hn, respectively. These
symbols are used to represent correspondences between
UVPPs and CVPPs. In this paper, the correspondence be-
tween the thek-th UVPPvk andi-th CVPPVi is represented
asvk → Vi, which meansvk is identified asVi,

The proposed method derives linear equations based on
conditions of coplanarity with regard to UVPPs and UH-
PPs; that is, a captured intersection provides a linear con-
straint equation with regard to the UVPP or UHPP that con-
tains it. In addition, all UVPPs should includeLv. Because
of this, two linear constraint equations are obtained with re-
gard to each of UVPPs and UHPPs. These equations form
a system of linear equations. In case that the captured inter-
sections are included in a linked set, this equation typically
has a single trivial solution and retains one degree of free-
dom; as it stands, it will not yield a unique solution (Section
3.4).

Since there is only one degree of freedom, if the posi-
tion of a UVPP (or UHPP) is determined, then the positions
of all the UVPPs and UHPPs will be determined. Thus by
assuming a correspondence betweenk′-th UVPP andi′-th
CVPP, which is denoted asvk′ → Vi′ , the positions of all
UVPPs and UHPPs can be determined. Then, by comparing
the positions with the CVPPs and CHPPs, each UVPP or
UHPP is corresponded to the nearest CVPP or CHPP. Then,
the differences between the UVPPs (or UHPP) and the cor-
responding CVPPs (or CHPP) are calculated. Let the sum
of the squared differences be denoted asEk′(i′), which is
a function ofi′. Then, the indexi′ that gives the minimum
error functioni′min ≡ arg mini′ Ek′(i′) is searched, and
the positions of UVPPs and UHPPs are determined from
the correspondencevk′ → Vi′min (Section3.5).

3.4. Solving coplanarity constraints

From the intersections of the VPCs and HPCs obtained
from the captured image, linear equations can be derived.
Suppose that the intersection betweenvk andhl is captured
and its position on the image in the coordinates of the nor-
malized camera is(sk,l, tk,l). The planesvk andhl are rep-



resented by

akx+ bky + ckz + 1 = 0, dlx+ ely + flz + 1 = 0. (1)

The location of the intersection(x, y, z) can be represented
using the coordinates of the image as

x = γ sk,l, y = γ tk,l, z = −γ. (2)

By eliminatingx,y,z andγ from equations (1) and (2),

sk,l(ak − dl) + tk,l(bk − el)− (ck − fl) = 0 (3)

is obtained.
In addition,vk contains the lineLv that contains the op-

tical centerOp of the projector. WithOp at (Px, Py, Pz),
and with the direction vector forLv being (Qx, Qy, Qz),
we obtain

akPx + bkPy + ckPz + 1 = 0, (4)

akQx + bkQy + ckQz = 0. (5)

Similarly, with the direction vector forLh being
(Rx, Ry, Rz),

dlPx + elPy + flPz + 1 = 0, (6)

dlRx + elRy + flRz = 0. (7)

By putting the forms (3), (4), (5), (6) and (7) together, a
system of linear equations

Mx = b (8)

wherex = (a1, b1, c1, · · · , am, bm, cm, · · · , d1, e1, f1, · · · ,
dn, en, fn)t is obtained.

If all the UVPPs and UHPPs coincide with the plane con-
taining bothLv andLh, the aforementioned linear equation
holds. This trivial solution is denoted asw. If we decide a
depth of one captured intersection, the depths of all the in-
tersections connected to it can be determined because con-
nected intersections are on a single plane, thus, the gen-
eral solutionx of equations (8) have 1-DOF indeterminacy.
Sincew is a particular solution andx has 1-DOF indeter-
minacy,

x = w + pu, (9)

where Mu = 0. Here, w and u can be calculated
by singular value decomposition (SVD) ofM as the fol-
lowing. Using SVD, we can obtain the decomposition
M = U diag(w1, w2, · · · , w3n) V>, where each ofU
and V is a matrix with column vectors that are orthogo-
nal with each other, andw1, w2, · · · , w3n are singular val-
ues sorted in decreasing order. From the SVD result,u in
form (9) can be obtained as the right-most column ofV,
and a particular solutionw in form (9) can be obtained by
w = V diag(1/w1, 1/w2, · · · , 1/w3n−1, 0) U>b.

3.5. Determining ambiguity

In the following discussion, plane parameters extracted
from a solution vectorx of the equation (8) are used. To rep-
resent the parameters, we define functionsã1, b̃1, · · · , f̃n
that extracts the parametersa1, b1, · · · , fn from a solution
vector, respectively. For example,ã1(x) is the parametera1

extracted from the solution vectorx.
The solutionx includes ambiguity of the scalarp. How-

ever, by assuming a specific correspondence, for example
the correspondence from thek′-th UVPP to thei′-th CVPP,
we can calculate the parameterp of the form (9), and deter-
mine all the locations of UVPPs and UHPPs as the follow-
ing. By assuming the correspondencevk′ → Vi′ ,

Ai′ = ãk′(w + pu) = ãk′(w) + p ãk′(u) (10)

holds, where(Ai′ , Bi′ , Ci′) are the parameters of the CVPP
Vi′ . From this form,p can be calculated by

p =
Ai′ − ãk′(w)

ãk′(u)
, (11)

then, all UVPPs and UHPPs are determined using thep. Let
this p of the form (11) be denoted asp(k′, i′). Also, let the
parameter vector(ak, bk, ck) of the UVPPvk be denoted as
vk. Treatingvk as coordinates of a point, it is the “dual” of
the planevk. Let hl be defined similarly (the “dual” of the
UHPPhl). We also defineṽk(x) ≡ (ãk(x), b̃k(x), c̃k(x)),
and h̃l(x) similarly. Then, vk and hl given the corre-
spondencevk′ → Vi′ , which we refer to asvk(k′, i′) and
hl(k′, i′), respectively, can be calculated by

vk(k′, i′) = ṽk(w) + p(k′, i′) ṽk(u),

hl(k′, i′) = h̃l(w) + p(k′, i′) h̃l(u). (12)

The next step is comparing the calculated UVPPs (or
UHPPs) with the CVPPs (or CHPPs). For each UVPP, the
difference between the UVPP and the nearest CVPP is cal-
culated as an error. Then, we can calculate the error func-
tion of the assumptionvk′ → Vi′ as the sum of squared
errors. By searching for the minimum of the error function,
we can find the optimum correspondence and solve the am-
biguity.

The comparisons are executed between UVPPs
vk(k′, i′),(k = 1, · · · ,m) and CVPPsVi,(i = 1, · · · ,M),
and also between UHPPshl(k′, i′),(l = 1, · · · , n) and
CHPPsHj ,(j = 1, · · · , N), whereVi andHj are parame-
ter vectors of CVPP and CHPP that are also treated as the
dual points of the planes. In this paper, comparison is done
based on the squared angles between the planes. More
specifically, the error function is defined as

Ek′(i′) ≡
m∑

k=1

min
i=1,...,M

{D(vk(k′, i′),Vi)}2

+
n∑

l=1

min
j=1,...,N

{D(hl(k′, i′),Hj)}2, (13)



whereD means the angle between two planes which can be
defined as

D(vk,Vi) ≡ arccos(
vk ·Vi

||vk|| ||Vi|| ). (14)

Then, i′min ≡ arg min
i′
Ek′(i′) (15)

is searched, and the set of planesvk(k′, i′), (k =
1, 2, ...,m) andhl(k′, i′), (l = 1, 2, ..., n) is the solution.
The error function (13) represents the differences between
the entire set of CVPPs (or CHPPs) and the set of UVPPs
(or UHPPs) reconstructed from the captured intersections.
Thus, the proposed method uses information of the loca-
tions of all the CVPPs and CHPPs simultaneously to deter-
mine the ambiguity of the coplanarity constraints.

Theoretically, if there is no observation errors, the pro-
posed method can reconstruct a linked set that consists of
only a single intersection generated by a UVPP and a UHPP
(the case ofm = n = 1). This extreme case is equivalent
to identifying the intersection using epipolar constraints. In
actual case, however, reconstruction with only an intersec-
tion may become unstable because of noise and dense grid
patterns. By using multiple UVPPs and UHPPs, the en-
durance to noise improves because more information is used
in the error function (13).

4. Configuration and detection of grid pattern

4.1. Configuration of grid pattern

As described in section3.5, the stability of the search of
i′min is affected by locations of CVPPs and CHPPs. If the
error function (13) has the unique minimum value at the true
solution, the correct solution is obtained by the search of
i′min. However, if the function has multiple minimum val-
ues, the search may fail. Fortunately, the cases of multiple
minimum values is very special (e.g. the case in which the
projector and the camera are parallel, the pattern is a square
and uniform grid, and the optical center of the projector is
on the line ofx = y, z = 0 in the camera coordinates), and
the search usually succeeds.

Another problem is that error values near minimum
value usually do not have significant differences from the
minimum value and it is difficult to search the true solution
due to the presence of noise. A simple way to prevent this
is placing CVPP and CHPP at irregular intervals on the pro-
jector’s image plane. By doing this, the irregularity makes
the minimum value of the energy function more distinguish-
able from other minimal values.

In terms of irregular patterns, to achieve more robust
search, longer intervals (i.e. sparse pattern) are preferable,
whereas dense patterns are required to densely scan an ob-
ject. Therefore, it is difficult to satisfy both requirements
at the same time. One effective solution is using combined
patterns of dense vertical lines with uniform intervals and

Figure 4.Example of (left) a projected pattern and (right) detected
HPCs and VPCs. In the right figure, red curves are HPCs, green
curves are VPCs, and intersection points are blue dots.

horizontal lines with irregular intervals (random intervals in
this paper) as shown in Fig.4(left). In our implementation,
vertical and horizontal patterns are respectively colored red
and blue so that they were easily distinguishable.

Note that this method does not directly encode informa-
tion into the patterns, but uses their connectivity, and thus
complicated encoding patterns like a Debruijn sequence [9]
are not required. Just a single color and a single pixel width
for lines are enough for this method. Because of those fea-
tures, this method is less affected by patterns distorted by
surface texture and object shape, resulting in robust and sta-
ble 3D reconstruction with simple image processing.

4.2. Detection of grid pattern

To project a grid pattern, we usually use a video projec-
tor as a light source. Since intensity of the light is relatively
weak compared to strong light sources like lasers or spe-
cial projectors, simple thresholding techniques cannot be
applied. Therefore, we implemented curve extraction al-
gorithm based on peak detection as follows.

First, the captured image is scanned horizontally and ver-
tically, detecting VPCs and HPCs, respectively, with sub-
pixel accuracy using peak detection algorithm. Then, these
peaks are connected using a simple labeling technique. In
our experiments, above-mentioned technique sufficiently
worked to retrieve satisfactory results, however, many line
detection algorithms have already been proposed and can be
used to obtain better results. Fig.4(right) shows example
of detected lines and intersection points.

In processing real images, several types of errors in de-
tection of patterns may occur. One of them is disconnection
of detected VPCs or HPCs. This type of error is not a se-
rious problem because the solution of the linear equation
(8) remains the same as long as the intersections config-
ure the same liked set. Other types errors such as wrong
connection of multiple VPCs (or HPCs) or wrong detection
of intersections changes the solution of the linear equation.
However, since the linear equation is over-constraint, our
method is robust to these types of errors; the robustness on
image processing is one of the most important advantages
of our method.



Figure 5.Synthesized grid patterns:(left) uniform intervals and
(right) irregular (randomized) intervals.

5. Experiments

5.1. Simulation data

Several experiments were conducted to demonstrate the
effectiveness of the proposed method.

The first experiment was conducted to confirm the va-
lidity of the proposed method using simulated data. Several
grid patterns were provided to synthesize simulated images.
The first grid consists of a complete set of lines aligned at
uniform intervals. The second is the same as the first, except
that the intervals of the horizontal lines are purposefully
randomized to disturb the uniformity of the grid pattern in
order to increase stability of determining correspondences
as described in section4.1. The synthesized camera images
of the grid patterns are shown in Fig.5. In the images,
the intervals of the VPCs were about 5 pixels. The inter-
sections of the grid patterns were extracted from the images
and the correspondences from the UHPPs and UVPPs to
the CVPPs and CHPPs were determined using the proposed
method. In the results of both patterns, the correct corre-
spondences for all the UHPP and UVPP were selected and
the reconstructed shapes exactly matched the ground truth.
The shape obtained from the data of irregular (random) in-
tervals with the ground truth is shown in Fig.6.

The processing time for reconstructing the input data
created using the pattern with randomized intervals on a PC
with a CPU of Xeon(3.8GHz) was about 1.6 sec. Almost all
of the time was spent for calculation of SVD. Oncew andu
of form (9) are obtained from the SVD result, the minimum
value search of form (15) took less than 0.001s.

Next, several experiment were conducted to evaluate the
stability of the proposed method when the input data (the set
of captured intersections) were disturbed by noise. Since
the stability of the proposed method depends on the pro-
jected pattern, the two types of patterns shown in Fig.5
were used and isotropic 2D Gaussian noise was added to
the captured intersections. The proposed method was ap-
plied to data with various noise levels, where noise levels
were standard deviations of the noise in pixels. 20 tests
were conducted for each noise levels. The error ratios of

Figure 6.Result of simulation data with irregular (randomized)
intervals. The red points are reconstructed points and the shaded
surface is the ground truth.
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Figure 7.Error ratios with different noise levels.

Figure 8.Real 3D Scanning System

the searches ofi′min in the form (15) are shown in Fig.7.
The results confirmed that stability of the algorithm was im-
proved using the pattern with irregular (random) intervals.

5.2. Real data - Rigid body objects

An actual 3D scanning system was built as shown in Fig.
8. Processing is performed by a PC with a Pentium Xeon
2.5Ghz CPU. Patterns were projected by a projector with
a resolution of 1024×768 and scenes were captured by a
CCD camera (720×480 pixels).

Figure 9 shows the captured scenes and results of re-
construction. In the experiment, a ceramic bottle, a paper
mask and a ceramic jug with intricate shapes and textures
were captured. As is apparent, detailed shapes were suc-



(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)
Figure 9. Reconstruction results of static objects: (a)(f)(l) the
target objects, (b) close-up view of reconstructed shape of (a),
(c)(d)(e)(g)(j)(k) reconstructed shape and (h) textured shape after
hole-filling.

cessfully recovered with the current method. Unlike with
previous methods, the proposed technique achieves recon-
struction even if jump edges and abrupt color changes exist
and lines are frequently segmented.

Next, a scene of a box (size: 0.4 m× 0.3 m× 0.3 m) and
a cylinder (height: 0.2 m, diameter: 0.2 m) was also recon-
structed in order to evaluate the accuracy of the proposed
method. The process of reconstruction was conducted in
the same way as in the previous experiment, except that
the 3D scene was also measured by a 3D scanner based

(a) (b)

(c) (d) (e)
Figure 10.Reconstruction and evaluation results: (a) the cap-
tured frames and (b)-(e) the reconstructed model displayed with
the ground truth data (red points: reconstructed model and shaded
model: ground truth).

on coded structured light [14] as the ground truth. Figures
10(a) shows the captured scene while (b) to (e) show both
the reconstruction (red points) and the ground truth (poly-
gon mesh). Although there were small differences observed
between the reconstruction and the ground truth, the shape
was correctly restored. The RMS error of the reconstruction
from the ground truth was0.52mm.

5.3. Real data - Deformable object

Finally, dynamic scene reconstruction was conducted
with a human face as the target object. The target scene was
captured to obtain a series of images while the face was be-
ing moved and facial expressions changed freely. Figures
11 show sample captured scenes and results of reconstruc-
tion. Results indicate that the proposed method successfully
restored the human facial expressions with dense and accu-
rate 3D point clouds.

6. Conclusion

This paper proposes a technique to densely measure
shapes of both static and dynamic scenes or objects using
a single projection of structured light. The proposed tech-
nique does not involve encoding positional information into
multiple pixels or color spaces, as often used in conven-
tional ‘one-shot’ 3D measurement methods; instead, the
technique reconstructs the shape only from local connection
information of a grid pattern. Thus, it provides dense shape
reconstruction even when discontinuities or occlusions in
the shape are present. In addition, since it is necessary to
distinguish only two types of patterns (curves), vertical and
horizontal, reconstruction is affected little by an object’s



(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)
Figure 11.Reconstruction of facial expressions: (a) a capturing
scene, (b) the captured frames, (c)-(e) facial expression 1(normal),
(f)-(h) facial expression 2(puffing up cheeks) and (i)-(k) facial ex-
pression 3(angry). Please carefully check the differences of the
shape between the eyebrows of (d) and (j).

texture, providing robust shape reconstruction. Tests were
done with simulated data and real data, confirming that the
proposed technique accurately reconstructed a 3D shape.
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