Dynamic scene shape reconstruction using a single structured light pattern
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Abstract sufficient number of patterns for decoding are projected. In

addition, the design of high-speed synchronization system
3D acquisition techniques to measure dynamic scenesis also an issue.

and deformable objects with little texture are extensively On the other hand, ‘one-shot’ structured light technigues

researched for applications like the motion capturing of hu- . . X ) . o ) .
. . using only single images in which positional information of
man facial expression. To allow such measurement, sev-

eral techniques using structured light have been propossed.the projectors’ pixels are embedded into spatial patterns of

. . ; the projected images have also been studied. Although the
These techniques can be largely categorized into two types . . . .
o . .“techniques can resolve the issues of rapid motions and syn-
The first involves techniques to temporally encode posi-

tional information of a projector’s pixels using multiple chronization, they typically use patterns of complex inten-

projected patterns, and the second involves technigues tOsmes or colors to encode positional information into local

: . . L areas. Because of the complex patterns, they often require
spatially encode positional information into areas or color : ;
.__assumptions of smooth surface or reflectance, and the im-

spaces. Although the former allows dense reconstruction . o .

. o ; - . age processing tends to be difficult. If the assumptions do
with a sufficient number of patterns, it has difficulty in scan- . .

. . . . : . not hold, the decoding process of the patterns may be easily
ning objects in rapid motion. The latter technique uses only affected and leads to unstable reconstruction
a single pattern, so this problem can be resolved, however, '
it often uses complex patterns or color intensities, which  This paper presents a single scanning technique resolv-
are weak to noise, shape distortions, or textures. Thus, iting the aforementioned problems . The proposed technique
remains an open problem to achieve dense and stable 3Duses a simple grid pattern formed by a number of straight
acquisition in real cases. In this paper, we propose a tech- lines distinguishable only as vertical or horizontal lines so
nique to achieve dense shape reconstruction that requiresthat image processing is simple and stable. In addition,
only a single-frame image of a grid pattern. The proposed there is no need to encode particular information for the lo-
technique also has the advantage of being robust in termscal grid pattern itself, so the pattern can be dense as long as

of image processing. the lines are extractable. Generally, a shape cannot be re-
_ constructed from such a pattern. Thus, a new technique that
1. Introduction reconstructs the grid pattern using coplanarity constraints

is presented. The technique simultaneously decodes posi-

To measure 3D shapes of dynamic scenes or objects,. . . . .
. . . tional information of all the grid points that are connected,
such as human facial expressions or body motions, speed, _. : : . "
using constraints on coplanarity obtained from the positions

dens]ty and accuracy of measurerr?e.nt are crucial. Smceof the grid points and the connectivity between them.
passive stereo techniques have difficulty in reconstruct-
ing textureless surfaces densely and accurately, active 3D The proposed technique allows efficient and robust pro-
measurement techniques, especially those using high-speedessing because it requires only local information of con-
structured light systems, have been extensively studied innectivity between adjacent grid points. In addition, it has
recent years for capturing dynamic scenes. the advantages of the shape not necessarily needing to be
Many structured light systems temporally encode posi- globally smooth as long as the local connectivity of the grid
tional information of a projector’s pixel into multiple pat- points can be extracted and thus allows the shape to be re-
terns. Recently, structured light systems that can capture astored even when there are abrupt changes in depth due to
dynamic scene by reducing the required number of patternsan occlusion or in color due to texture. Moreover, decoding
and increasing pattern speed have been proposed. Thesaf the grid pattern can be achieved by a one-dimensional
systems assume that there is little motion in a scene while asearch, providing high-speed shape reconstruction.



2. Related works Target object

Shape reconstruction techniques with a structured light
system, which encode positional information of a projec-
tor into temporal or spatial changes in a projected pattern,
have been largely investigated and summarized.in T].

A technique using only temporal changes is easy to imple-
ment, so it has commonly been used thusfas[2]. Since

the technique uses multiple patterns necessary for decod- camea
ing, it requires special attention to be applied to high-speedFigure 1.Scanning system:(left) the system configuration, and

Projector  Camera Projector

capturing. (right) the definition of the coordinates.
Techniques using only spatial encoding of a pattern al- . ) ) )
low scanning with only a single-frame imag@, [12, 17 equations are constructed from the intersections of the lines

They typically use complex patterns or colors for phase ON the grid using the same formulation used in those works.

unwrapping process and require assumptions of smooth orf he projected lines are identified by solving the equations.

continuous surface or assumptions of uniform or smooth re-In the proposed method, no initial identification of the grid

flectance, either locally or globally. If the assumptions do lines are required and the lines can be dense as long as

not hold, the decoding process of the patterns may be easil;lhey can be ext_ractable to acquire hlgh—re§olutlonal §hapes.

affected and leads to ambiguities near depth or color dis-Unlike the previous ‘one-shot’ structured light techniques,

continuities. our technique does not assume smooth shape or uniform
Several research reducing the required number of pat_r_efle_zgtance of the surface and is robust against local disc_on-

terns using both temporal and spatial changes were prelmumes of grid patterns. Therefore, the image processing

sented 7, 15]. Although the technique is basically lim- ¢an be as simple as peak detection while vertical and hori-

ited in that the scene must be static while multiple patterns zontal scanning.

are projected, Hall-Holet al. [7] proposed an enhanced

method to eliminate the limitation by aligning the recon- 3. Shape from grid pattern

structed shape with respect to a rigid body constraint. Davis i i

et al. proposed an efficient method to reduce patterns by us-3-1- System configuration

ing multiple camerasif]. . The 3D measurement system consists of a camera and a
Although it does not strictly mvolvela stru.ctured light projector as shown in Figleft). The camera and the pro-
system, methods of shape reconstruction to include moveqector are assumed to be calibrated (i.e. the intrinsic param-
ment by spatio-temporal stereo matching are proposed [ eters of the devices and their relative positions and orien-

, 17]. With these techniques, a projector is only used 10 tations are known). The projector pattern does not change,
provide a texture that changes over time for a pair of stere0gq ng synchronization is needed. A grid pattern of vertical
cameras to achieve high-quality depth reconstructions. All 3ng horizontal lines is projected from the projector and cap-
the techniques require either spatial or temporal synchro-yreq by the camera. The vertical and horizontal lines are
nization. assumed to be distinguishable. One way to achieve this is

Koninckx et al. proposed a technique allowing dense py sing different colors for the vertical and horizontal lines
shape reconstruction based on a single image using a simplgq classifying them by color.

pattern,i.e. a set of stripesi[0, 11]. This was achieved by

combining qense unidentified stripes a_nd several ?dentifieds_z_ Problem definition

stripes. Their method depends on relative numbering of the

dense patterns, which assumes local smoothness of the sur- A straight line on the grid projected by the projector de-

face and may be disturbed by shape discontinuities and linefines a plane in 3D space. Planes defined by a vertical line

detection failures. To cope with these problems, they de-and a horizontal line are respectively referred to as a Vertical

veloped highly sophisticated line detection and correction Pattern Plane (VPP) and a Horizontal Pattern Plane (HPP) .

algorithms. The projector is assumed to have been calibrated. That
Furukawaet al. and Eckeret al. used multiple images s, all parameters for the VPPs and HPPs in 3D space are

projected by an uncalibrated line laser to construct simulta-known. A VPP and a HPP with known parameters are re-

neous linear equations and reconstructed a scene or shafderred to as a Calibrated VPP (CVPP) and a Calibrated HPP

by solving them §, 5]. Such equations are derived from (CHPP), respectively. In addition, all CVPPs are assumed

coplanar constraints of intersection points between tempo-to contain the same ling,, as in the figurel(right). Simi-

rally accumulated projected line-lasers. In this paper, a gridlarly, all CHPPs contain a liné,,. The intersection of these

pattern is projected onto the target scene and simultaneouswo lines, L, and L;, corresponds to the optical center of
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Figure 3.Linked sets of captured intersections:(left) an example
the projectoi0,,. The pointO,, and the direction vectors for  of a linked set, and (right) an example of a linked set that include

L, andL;, are known by calibration. discontinuity of the pattern.
A vertical line projected onto the scene produces a ob-
servable 3D curve on the surface of the scene, and the curv@svi, vs, - -+ , vy, @ndhy, ha, - - -, h,, respectively. These

is on the VPP defined by the line. In this paper, the 3D curve symbols are used to represent correspondences between
is referred to as a Vertical Pattern Curve (VPC). A Horizon- UVPPs and CVPPs. In this paper, the correspondence be-
tal Pattern Curve (HPC) is defined in the same way. Inter- tween the thé-th UVPPuv, andi-th CVPPV; is represented
sections between the VPCs and HPCs are extracted fronfsvy — V;, which meansy, is identified as/;,
images captured by the camera. Here, these points are re- The proposed method derives linear equations based on
ferred to as captured intersections. These intersections areonditions of coplanarity with regard to UVPPs and UH-
connected by the VPCs and HPCs and the connectivity isPPs; that is, a captured intersection provides a linear con-
extracted by image processing (Fig). Since the corre-  straint equation with regard to the UVPP or UHPP that con-
spondence from each VPC detected in the image to a partains it. In addition, all UVPPs should includg,. Because
ticular CVPP is unknown, a VPP that contains a VPC is re- of this, two linear constraint equations are obtained with re-
ferred to as an Unknown VPP (UVPP). An Unknown HPP gard to each of UVPPs and UHPPs. These equations form
(UHPP) is similarly defined. a system of linear equations. In case that the captured inter-
The goal of the problem is to determine correspondencessections are included in a linked set, this equation typically
between the UVPPs (UHPPs) and CVPPs (CHPPs) (other-has a single trivial solution and retains one degree of free-
wise described as identifying UVPPs and UHPPs). As a re-dom, as it stands, it will not yield a unique solution (Section
sult, 3D positions of all the captured intersections become3.4).
known. Multiple UVPPs may correspond to a single CVPP,  Since there is only one degree of freedom, if the posi-
and the same assumption holds for UHPPs as well; this cas¢ion of a UVPP (or UHPP) is determined, then the positions
happens when, for example, a single CVPP generates mulof all the UVPPs and UHPPs will be determined. Thus by
tiple VPCs because of discontinuities. assuming a correspondence betwgéth UVPP andi’-th
A set of intersection points that are connected by VPCs CVPP, which is denoted ag. — Vj/, the positions of all
or HPCs are defined as “a linked set”. A linked set can UVPPs and UHPPs can be determined. Then, by comparing
include discontinuities between adjacent grid points as longthe positions with the CVPPs and CHPPs, each UVPP or
as the two points are connected by a path of multiple VPCsUHPP is corresponded to the nearest CVPP or CHPP. Then,
and HPCs as shown in Fi{left) and (right). By using this  the differences between the UVPPs (or UHPP) and the cor-
term, all the captured intersections are divided into multiple responding CVPPs (or CHPP) are calculated. Let the sum
linked setsé.g two linked sets are observed in Figfleft)). of the squared differences be denotedtas(i’), which is
In the proposed method, the target set of intersections isa function ofi’. Then, the index’ that gives the minimum
assumed to be contained in the same linked set. When thererror functioni’,,,;,, = argmin; Ey/ (i) is searched, and
are multiple linked sets, each can be reconstructed usinghe positions of UVPPs and UHPPs are determined from
the same technique, so this assumption does not restrict théhe correspondenag,, — V;: . (Section3.5).
generality of the solution.

min

3.4. Solving coplanarity constraints

3.3. Qutline of the solution From the intersections of the VPCs and HPCs obtained

Let the CVPPs obtained by calibration be repre- from the captured image, linear equations can be derived.
sented asVi,Vs,---,Vy, CHPPs be represented as Suppose that the intersection betwegrandh, is captured
H,,Hs,---,Hy, respectively. Also, let the UVPPs and and its position on the image in the coordinates of the nor-
UHPPs obtained from the captured image be representednalized camera sy, ;, t;,;). The planesy, andh, are rep-



resented by

arx+ by +cez+1=0, diz+ey+ frz+1=0. (1)

The location of the intersectiofx, y, z) can be represented

using the coordinates of the image as
T=7Ski, Yy ="7tki, 2= —7. 2
By eliminatingz,y,z and~ from equationsX) and @),
spalar —dp) +tei(by —e) — (e — fi) =0 (3)

is obtained.

In addition,v; contains the lind.,, that contains the op-
tical centerO,, of the projector. WithO,, at (P,, P, P.),
and with the direction vector fok, being (Q.,Qy,Q-),
we obtain

apPy + by Py+c, P, +1=0, 4)

asz + kay + Csz =0. (5)

Similarly, with the direction vector forL; being
(va Ry> RZ)a

APy +e Py + fiP, +1=0, (6)

diR, + elRy + flRZ =0. (7)

By putting the forms ), (4), (5), (6) and (/) together, a
system of linear equations

Mx = b ®)

wherex = (a1, b1,c¢1, -
dn,en, frn)t is obtained.

';dlvelafli"'y

©y Ay, bma Cm,y "

If all the UVPPs and UHPPs coincide with the plane con-
taining bothL, andL;, the aforementioned linear equation

holds. This trivial solution is denoted as. If we decide a

3.5. Determining ambiguity

In the following discussion, plane parameters extracted
from a solution vectox of the equationg) are used. To rep-
resent the parameters, we define functianshs, - - - , f»
that extracts the parameters, b4, - - - , f,, from a solution
vector, respectively. For examplg,(x) is the parameter;
extracted from the solution vectar

The solutionx includes ambiguity of the scalar How-
ever, by assuming a specific correspondence, for example
the correspondence from théth UVPP to the’-th CVPP,
we can calculate the parameteof the form @), and deter-
mine all the locations of UVPPs and UHPPs as the follow-
ing. By assuming the correspondenge — V-,

Ay =ap(w+pu) =ap(w)+pap(a)  (10)

holds, wheré A;/, B/, C;/) are the parameters of the CVPP
Vir. From this formp can be calculated by

p= w7 (11)

ay (u)

then, all UVPPs and UHPPs are determined usingthest
this p of the form (L1) be denoted ag(k’,i'). Also, let the
parameter vectdfay, by, ¢ ) of the UVPPu, be denoted as
vi. Treatingvy as coordinates of a point, it is the “dual” of
the planev;. Leth; be defined similarly (the “dual” of the
UHPPR;). We also definei, (x) = (dx(x), bx (%), ér(x)),
and Hl(x) similarly. Then, v, and h; given the corre-
spondencey,, — V;/, which we refer to as,(k’,4’) and
h;(K',4’), respectively, can be calculated by

vi(K',i") = Vi(w) + p(K', i) Vi (u),
(K, 7') = hy(w) +p(K, ) y(u).  (12)
The next step is comparing the calculated UVPPs (or
UHPPs) with the CVPPs (or CHPPs). For each UVPP, the

difference between the UVPP and the nearest CVPP is cal-
culated as an error. Then, we can calculate the error func-

depth of one captured intersection, the depths of all the in-tion of the assumptiom;, — Vi, as the sum of squared
tersections connected to it can be determined because corf2TOrs- By searching for the minimum of the error function,
nected intersections are on a single plane, thus, the gen¥e can find the optimum correspondence and solve the am-

eral solutionx of equations§) have 1-DOF indeterminacy.

Sincew is a particular solution ang has 1-DOF indeter-
minacy,
X =w+pu, )

where Mu = 0. Here, w and u can be calculated
by singular value decomposition (SVD) ®f as the fol-

lowing. Using SVD, we can obtain the decomposition

M = U diag(wy,ws, - ,ws,) V', where each ofU

andV is a matrix with column vectors that are orthogo-

nal with each other, and, w-, - - - , ws,, are singular val-
ues sorted in decreasing order. From the SVD resuit
form (9) can be obtained as the right-most column\of
and a particular solutiow in form (9) can be obtained by
w =V diag(1/wy, 1/wa,--- ,1/wz,_1,0) U'b.

biguity.

The comparisons are executed between UVPPs
vi(k',i'),(k =1,--- ;m)and CVPPV,,(i = 1,--- , M),
and also between UHPRs;(k’,¢),(I = 1,---,n) and
CHPPsH,,(j =1,---,N), whereV,; andH; are parame-
ter vectors of CVPP and CHPP that are also treated as the
dual points of the planes. In this paper, comparison is done
based on the squared angles between the planes. More
specifically, the error function is defined as

m

,,,,,

+;fiﬂ.i.r.l,N{D(hl(k’,i’),Hj)}Q, (13)



whereD means the angle between two planes which can be
defined as

-V
D(vy, V;) = arccos( Yk

T2

Then, ' in = argmin By, (i') (15)

is searched, and the set of planeg(k’,i'), (k =
1,2,..,m)andh; (k' ), (I = 1,2,...,n) is the solution. A /]
The error function 13) represents the differences between Figure 4.Example of (left) a projected pattern and (right) detected
the entire set of CVPPs (or CHPPs) and the set of UVPPsHPCs and VPCs. In the right figure, red curves are HPCs, green
(or UHPPs) reconstructed from the captured intersections.curves are VPCs, and intersection points are blue dots.
Thus, the proposed method uses information of the loca- ) o ) ) )
tions of all the CVPPs and CHPPs simultaneously to deter-horizontal lines with irregular intervals (random intervals in
mine the ambiguity of the coplanarity constraints. this_paper) as s_hown in Fig(left). In our implementation,
Theoretically, if there is no observation errors, the pro- vertical and horizontal patterns. are_rgspec_:twely colored red
posed method can reconstruct a linked set that consists oftnd blue so that they were easily distinguishable.

only a single intersection generated by a UVPP and a UHPP  Note that this method does not directly encode informa-
(the case ofn = n = 1). This extreme case is equivalent tion into the patterns, but uses their connectivity, and thus

to identifying the intersection using epipolar constraints. In cOmplicated encoding patterns like a Debruijn sequetice [

actual case, however, reconstruction with only an intersec-aré not required. Just a single color and a single pixel width
tion may become unstable because of noise and dense grifP" lines are enough for this method. Because of those fea-
patterns. By using multiple UVPPs and UHPPs, the en- tures, this method is less affected by patterns distorted by

durance to noise improves because more information is usegurface texture and object shape, resulting in robust and sta-
in the error function 13). ble 3D reconstruction with simple image processing.

4. Configuration and detection of grid pattern ~ 4-2- Detection of grid pattern

To project a grid pattern, we usually use a video projec-
tor as a light source. Since intensity of the light is relatively
As described in sectioB.5, the stability of the search of weak compared to strong light sources like lasers or spe-
"' min is affected by locations of CVPPs and CHPPs. If the cial projectors, simple thresholding techniques cannot be
error function (3) has the uniqgue minimum value at the true applied. Therefore, we implemented curve extraction al-
solution, the correct solution is obtained by the search of gorithm based on peak detection as follows.
"' min. However, if the function has multiple minimum val- First, the captured image is scanned horizontally and ver-
ues, the search may fail. Fortunately, the cases of multipletically, detecting VPCs and HPCs, respectively, with sub-
minimum values is very specia.g the case in which the  pixel accuracy using peak detection algorithm. Then, these
projector and the camera are parallel, the pattern is a squarpeaks are connected using a simple labeling technique. In
and uniform grid, and the optical center of the projector is our experiments, above-mentioned technique sufficiently
on the line ofr = y, z = 0 in the camera coordinates), and worked to retrieve satisfactory results, however, many line
the search usually succeeds. detection algorithms have already been proposed and can be
Another problem is that error values near minimum used to obtain better results. Fig(right) shows example
value usually do not have significant differences from the of detected lines and intersection points.
minimum value and it is difficult to search the true solution In processing real images, several types of errors in de-
due to the presence of noise. A simple way to prevent thistection of patterns may occur. One of them is disconnection
is placing CVPP and CHPP at irregular intervals on the pro- of detected VPCs or HPCs. This type of error is not a se-
jector's image plane. By doing this, the irregularity makes rious problem because the solution of the linear equation
the minimum value of the energy function more distinguish- (8) remains the same as long as the intersections config-
able from other minimal values. ure the same liked set. Other types errors such as wrong
In terms of irregular patterns, to achieve more robust connection of multiple VPCs (or HPCs) or wrong detection
search, longer intervals.€. sparse pattern) are preferable, of intersections changes the solution of the linear equation.
whereas dense patterns are required to densely scan an olbtowever, since the linear equation is over-constraint, our
ject. Therefore, it is difficult to satisfy both requirements method is robust to these types of errors; the robustness on
at the same time. One effective solution is using combinedimage processing is one of the most important advantages
patterns of dense vertical lines with uniform intervals and of our method.

4.1. Configuration of grid pattern
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Figure 5.Synthesized grid patterns:(left) uniform intervals and )
(right) irregular (randomized) intervals. Figure 6.Result of simulation data with irregular (randomized)
intervals. The red points are reconstructed points and the shaded
5. Experiments surface is the ground truth.
51 SImUlatlon data 08 —>— Uniform intervals
07 |
Several experiments were conducted to demonstrate the 06 ff = Randomintervals

0.5

04 /Z/E
03

effectiveness of the proposed method.
The first experiment was conducted to confirm the va-

Error ratio

lidity of the proposed method using simulated data. Several A e

grid patterns were provided to synthesize simulated images. 02

The first grid consists of a complete set of lines aligned at oy _ / /

uniform intervals. The second is the same as the first, except 0 : :5 . 15 2 25 3 35
that the intervals of the horizontal lines are purposefully Noise level (standerd deviation)[pixels]

randomized to disturb the uniformity of the grid pattern in
order to increase stability of determining correspondences
as described in sectighl The synthesized camera images
of the grid patterns are shown in Figh. In the images,
the intervals of the VPCs were about 5 pixels. The inter-
sections of the grid patterns were extracted from the images
and the correspondences from the UHPPs and UVPPs to
the CVPPs and CHPPs were determined using the proposed
method. In the results of both patterns, the correct corre-
spondences for all the UHPP and UVPP were selected and
the reconstructed shapes exactly matched the ground truth.
The shape obtained from the data of irregular (random) in-
tervals with the ground truth is shown in Fig.

The processing time for reconstructing the input data
created using the pattern with randomized intervals on a PC

with a CPU of Xeon(3.8GHz) was about 1.6 sec. Almost all the searches Qf?”m in the form.('l5) are shown' In Fig.7. .
: : The results confirmed that stability of the algorithm was im-
of the time was spent for calculation of SVD. Ongeandu

of form (9) are obtained from the SVD result, the minimum proved using the pattern with irregular (random) intervals.

value search of forml@ took less than 0.001s. 5.2. Real data - Rigid body objects
Next, several experiment were conducted to evaluate the
stability of the proposed method when the input data (the set  An actual 3D scanning system was built as shown in Fig.
of captured intersections) were disturbed by noise. Since8. Processing is performed by a PC with a Pentium Xeon
the stability of the proposed method depends on the pro-2.5Ghz CPU. Patterns were projected by a projector with
jected pattern, the two types of patterns shown in Fig.  a resolution of 1024768 and scenes were captured by a
were used and isotropic 2D Gaussian noise was added t&CCD camera (720480 pixels).
the captured intersections. The proposed method was ap- Figure 9 shows the captured scenes and results of re-
plied to data with various noise levels, where noise levels construction. In the experiment, a ceramic bottle, a paper
were standard deviations of the noise in pixels. 20 testsmask and a ceramic jug with intricate shapes and textures
were conducted for each noise levels. The error ratios ofwere captured. As is apparent, detailed shapes were suc-

Figure 7.Error ratios with different noise levels.

Figure 8.Real 3D Scanning System
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Figure 10.Reconstruction and evaluation results: (a) the cap-
tured frames and (b)-(e) the reconstructed model displayed with
the ground truth data (red points: reconstructed model and shaded
model: ground truth).

on coded structured lightLf] as the ground truth. Figures
10(a) shows the captured scene while (b) to (e) show both
the reconstruction (red points) and the ground truth (poly-
gon mesh). Although there were small differences observed
between the reconstruction and the ground truth, the shape
was correctly restored. The RMS error of the reconstruction
from the ground truth wag.52mm.

5.3. Real data - Deformable object

Finally, dynamic scene reconstruction was conducted
with a human face as the target object. The target scene was
captured to obtain a series of images while the face was be-
ing moved and facial expressions changed freely. Figures
11 show sample captured scenes and results of reconstruc-

¢ 'y iy, | A tion. Results indicate that the proposed method successfully
0 0 () restored the human facial expressions with dense and accu-

Figure 9.Reconstruction results of static objects: (a)(f)(l) the rate 3D point clouds.
target objects, (b) close-up view of reconstructed shape of (a),
(c)(@)(e)(@)()(k) reconstructed shape and (h) textured shape after§. Conclusion
hole-filling.
’ This paper proposes a technique to densely measure
] ) _ shapes of both static and dynamic scenes or objects using
cess_fully recovered with the current m_ethod. L!nhke with 4 single projection of structured light. The proposed tech-
previous methods, the proposed technique achieves reconjque does not involve encoding positional information into
struction even if jump edges and abrupt color changes existytiple pixels or color spaces, as often used in conven-
and lines are frequently segmented. tional ‘one-shot’ 3D measurement methods; instead, the
Next, a scene of a box (size: 0.4x10.3 mx 0.3 m) and technique reconstructs the shape only from local connection
a cylinder (height: 0.2 m, diameter: 0.2 m) was also recon- information of a grid pattern. Thus, it provides dense shape
structed in order to evaluate the accuracy of the proposedreconstruction even when discontinuities or occlusions in
method. The process of reconstruction was conducted inthe shape are present. In addition, since it is necessary to
the same way as in the previous experiment, except thatdistinguish only two types of patterns (curves), vertical and
the 3D scene was also measured by a 3D scanner baseklorizontal, reconstruction is affected little by an object’s
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