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Abstract

Range scanners using projector-camera systems have /y
been studied actively in recent years as methods for mea- "\
suring 3D shapes accurately and cost-effectively. To ac- k
quire an entire 3D shape of an object with such systems, «
the shape of the object should be captured from multiple di- Jarget object
re(?tlons a”?' the set of captured shapes ShOL!'d be allgnec%:igure 1. Entire shape scanning by moving a projector and a cam-
using algorithms such as ICPs. Then, the aligned shapeser, freely without calibration process.
are integrated into a single 3D shape model. However,
the captured shapes are often distorted due to errors of in- ) ]
trinsic or extrinsic parameters of the camera and the pro- PiXels into projected patterns, accurate correspondences can
jector. Because of these distortions, gaps between overbe obtalrjed in pixel or sub-pixel accuracies. Thus, dense
lapped surfaces remain even after aligning the 3D shapes.and precise 3D shapes can be captured.
In this paper, we propose a new method to capture an en-  Using these types of range scanners, only object surface
tire shape with high precision using an active stereo range that is observable from both the projector and the camera
scanner which consists of a projector and a camera with can be captured. Therefore, to acquire an entire 3D shape of
fixed relative positions. In the proposed method, minimiza- &n object, the shape of the object should be captured from
tion of calibration errors of the projector-camera pair and Multiple directions. The set of captured shapes should be
registration errors between 3D shapes from different view- aligned correctly to be integrated into a single shape model.
points are simultaneously achieved. The proposed method? typical algorithm to align the captured 3D shapes is ICP
can be considered as a variation of bundle adjustment tech-algorithm. In this algorithm, two processes are executed it-
niques adapted to projector-camera systems. Since acquisieratively; one is a process of searching corresponding points
tion of correspondences between different views is not easypetween overlapping regions of the shapes, and the other is
for projector-camera systems, a solution for the pr0b|em is a process of mInImIZIng the distances between the searched
also presented. correspondences by moving each of the captured shapes.
However, in real projector-camera systems, the intrinsic
. and the extrinsic parameters of the system have certain lev-
1. Introduction els of errors. Due to these errors, the captured shapes are
Range scanners using projector-camera systems havdistorted. Thus, there remains gaps between the captured
been studied actively in recent years as methods for measurshapes, even after they are aligned with ICP algorithms.
ing 3D shapes accurately and cost-effectively. In these sys-Such gaps cause several severe probles, failure in
tems, a target scene is captured while it is lit by special pat-shape integration and blurring effect on texture.
terns of light. From the captured patterns, correspondence In this paper, we propose a simple method to capture an
between pixel locations of the projector and the camera isentire shape with high accuracy using active stereo systems
obtained. Since the geometrical structure of a projector canwhich consists of a projector and a camera. The basic idea
be regarded to be the same as a camera in such systems, 3B to apply multi-view reconstruction technique to a active
reconstruction is achieved from the correspondences by usstereo system and proposes a method for simultaneous esti-
ing a triangulation method. By coding locations of projector mation of extrinsic parameters of the active stereo system,



motion parameters of different views, and 3D shape of the Estimated shape
scene. Since a projector can be regarded as an inverse cam-
era in these types of systems, it has been pointed out that
its geometrical properties are the same as those of the cam-
era [14]. Therefore, the proposed method can be considered
as a variation of bundle adjustments for camera systems to
projector-camera systems, in which motion parameters of
the projector-camera pair, extrinsic parameters, intrinsic pa- : :
rameters and 3D positions of points are simultaneously re-
fined. Note that there is a paper to solve the problem without Frojector(estmated pose)
assuming specific range scanner [4], however, our methodFigure 2. False shape reconstruction of a projector-camera system.
is much simpler and stable for a procam system.

Actual scanning process is as follows. First, scan a tar-
get object by moving the projector-camera pair to cover the
entire shape as shown in Figure 1. At each motion, active
stereo method is applied to reconstruct the shape. Then,
an initial registration is applied by manual or using image
features. Finally, a modified bundle adjustment method for
projector camera systems is conducted to retrieve the finalrigure 3. A gap of registration by a shape error: (left) registration
result. of shapes with errors, and (right) registration of accurate shapes

Note that the correspondences between different views
can be acquired stably by tracking feature points for cam- 2. Related works
eras, whereas, it is difficult for projector-camera systems

. . . Dense shape reconstruction using a camera is one of the
because a projector is an inverse camera and cannot capture . .
; . . . most important topic for CV and currently there are many
an image. To deal with this problem, the paper introduces a

. i r rch n recover the entire sh fth -
method that regards a 3D point of one view as correspond- esearches conducted to recover the entire shape of the ob

. . .. ject using multi-view metry techni 15]. How-
ing to the closest points on reconstructed shapes from dlf-JeC using mu ew geometry techniques [8, 15]. Ho

: o . . " ever, such methods basically require a precise calibration
ferent views. Then, a modified bundle adjustment 'S.app“edfor all views and it is still a laborious task. On the other

%and, SfM method, which does not require pre-calibration,

intrinsic and extrinsic parameters of the projector-camera . . o
. ) but simultaneously estimates the shape and the positions of
pair, the motion parameters, and the shapes from all the

) . . o : he movin mera, h nr rched for a long time.
viewpoints ( The difference of the modified bundle adjust- the moving camera, as bee esearc ed for a lo g_t_ €
ment used in the pronosed method from the normal bundleSfM method usually estimates the initial values by utiliz-
adjustment is that?heprelative osition between the ro'ectoring a closed-form solution, such as factorization [16]. After

J g P projecto tpat, the final camera parameters and motion parameters are
and the camera is fixed, whereas there are no such constraint_.. . .
. refined by bundle adjustments [17] through non-linear op-
for the normal bundle adjustment). New correspondences,. . . : .
timization. However, SfM needs precise feature extraction,

are then estimated from the resulting shapes. The process is, . . : .
: . : Which is not easy especially when the target objects are tex-
repeated until a residual error stop decreasing.

The contributions of the proposed system are as follows: tureless.
Because of the problems of SfM, such as difficulties
1. By moving the projector and the camera with a fixed in measuring textureless objects, and producing dense 3D
relative positions by using, for example, a projector- shapes, active range sensors are usually used for actual 3D
camerarig, entire shapes of textureless objects or largescanning. In order to measure a large scene or an entire
scenes can be captured densely and accurately. shape of a target object, measurements are taken multiple
times from different viewpoints, and the acquired shapes
are integrated afterwards. A well-known algorithm used for
registering the measured shapes from the multiple views is
the ICP (lterative Closest Point) algorithm [2, 6, 18, 13, 12].
Regarding shape data that has been registered to some ex-
tent, the ICP algorithm registers the shape precisely by re-
3. The method to estimate precise correspondences bepeatedly estimating the data’s correspondence and the mo-
tween shapes measured from different viewpoints, tion parameters based on that correspondence. However,
which are difficult to acquire directly with projector- even if these methods are applied, original distortion in the
camera systems, is presented. shape due to errors of the range sensors causes gaps in the
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2. By applying bundle adjustment for projector camera
systems, motion parameters between multiple view-
points and extrinsic and intrinsic parameters of the
projector-camera system can be simultaneously esti-
mated.



the projector-camera system can be obtained by decoding
the captured patterns. By repeating this process while mov-
ing the projector-camera pair, multiple shapes from multiple

views are acquired (Figure 1).

3.3. Parameters to be estimated
The parameters to be estimated with the proposed

Postion 1 Positon 2 method include: (a) intrinsic parameters for the projector
and the camera, (b) relative position and orientation for the
Figure 4. A projector-camera system for 3D acquisition. projector-camera system, which are usually called extrinsic

parameters, (c) motion parameters for each viewpoint, and
(d) 3D coordinates for sampled points on the shape. With

integr h . i
tegrated shape . . regard to (a), we assume that all of the initial values for the
In terms of range sensors, among wide varieties of them.

. . : intrinsic parameters have some level of precision, and the
[1], systems that use coded structured light with aprOJector—Onl arameter estimated using the proposed method is the
camerasystem[1, 5, 3, 10, 9] are widely used, because of it yp g brop

hiah precision. simple configuration and easy manipulation Jocal length. This is due to the fact that focus or zoom ad-
gnp ' P 9 y b '|j1ustments are often desired in real cases of measurements
Thus, we also adopt the system for our research. To scan a ) :
: ) L . because of shallow field of depth of projectors.
object accurately, precise calibration of a projector-camera
system is necessary, because a precision of the reconstruc- itial . .
tion is directly influenced by calibration parameters. There- 3.4. Initial parameter estimation
fore, in this paper, we estimate calibration parameters as Since we do not assume any explicit calibration process,
well as motion parameters simultaneously to retrieve the all the initial parameters should be estimated without using
better result. a calibration pattern or box.

3. Entire shape acquisition by multi-view In terms of estimation of extrinsic parameter for a pro-
active-stereo jector and a camera system, we can apply a self-calibration

technique proposed by Kawasakal. [7]. The technique is

3.1. Outline a simple extension of a self-calibration technique of a stereo

The outline of the proposed algorithm is as follows. Camera pair to a projector and a camera system. To retrieve
First, we perform multiple 3D shape reconstructions us- correspondences between the projector and the camera, the
ing an active stereo method with the projector-camera sys-system projects a number of patterns. Since a large number
tem. Since we do not assume pre-calibration step in the sysof correspondence can be retrieved by the projector-camera
tem, we estimate the initial extrinsic parameters using self- system, extrinsic parameters can be stably estimated. After
calibration [7] and subsequently acquire the initial shape estimation, dense 3D shapes can be reconstructed.
(Sec. 3.2). Next, a rough registration is performed using In terms of estimation of motion parameters between
feature tracking using images captured by cameras followedprojector-camera system pairs, we can use images which
by a precise registration by ICP and these are used as the iniare captured by a camera. Actual process is as follows:
tial values of the motion parameters (Sec. 3.4). Since wrong ) ) )
correspondences sometimes occur using image feature, the 1- APply feature extraction and tracking algorithm be-
motion parameters are refined by using the ICP algorithm ~ tween successive frames to acquire correspondences.
to improve stability of the bundle adjustment. Finally, with For a feature extraction, SIFT [11] was used.
regard to the overlapping areas of each shape, multiple 3D
points are sampled, and those 3D points are used for bundle
adjustment to optimize all the parameters (Sec. 4).

2. Estimate rigid transformation parameters by using 3D
coordinates of correspondences as described in [2].

3. Apply ICP [2] to all the 3D points to achieve precise

3.2. System and data capturing process X g
registration.

The system proposed in this paper consists of a projector
and a camera that are relatively fixed in position by, for ex- In actual process, it sometimes happened that correct mo-
ample, a rig as shown in Figure 4. It uses coded structuredtion parameters are not estimated because of failure in re-
light method to measure 3D scenes. To capture a 3D shapérieving enough correspondences especially for textureless
of the scene, the projector and the camera are pointed at thebject, such as plaster figures in Step 1. At that time, we
target object, and images of the object are taken while mul-manually select correspondences to estimate rough motion
tiple patterns are projected onto it. The correspondences foparameters before Step 3.



| Data acquisition | stability. In order to prevent this, we sample points from the
depth images to reduce the computational costs. In the cur-
rent implementation of this study, random sampling from
the valid pixels of the range images is used. This sampling
process occurs only once, and the sampled points are fixed
throughout all the subsequent processes. During the bun-
dle adjustment process, sample points for which correspon-
Bundle Adjustment for Optimization dences cannot be found are not used.

Estimation of corresponding point on images |

Initial parameter estimation

| Calibration of projector-camera system |

| Sampling 3D points |

4.3. Acquisition of correspondence points

]
Definition of error functionl If the system consists of only cameras, the correspon-
] dence points are stably obtained by tracking feature points
Estimation of projector-camera system on the images. However, with projector-camera systems,
calibration parameters + correspondences between range images of different view-
Stereo reconstruction using the estimated parameters | pOintS cannot be vaUired eXpIiCit|y1 which should be deter-

mined to use bundle adjustment. In the proposed method,
| the closest 3D points from a sample point searched from
each of the other reconstructed range images of the differ-
ent viewpoints are used as the corresponding points of the
End sample. Since this does not ensure correct correspondences,
the corresponding points are updated iteratively. The details
of the algorithm are as follows: (Please see Figure 6)

Figure 5. Flow of the process.

4. Bundle adjustment for projector camera

Step 1 One of the sampled points is selected. The points
systems

corresponding to the selected point on the shapes re-
4.1. Outline constructed from projector-camera pairs of different
viewpoints are estimated using the nearest-neighbor

To optimize the parameters of the initial estimation, the ] .
search technique [13]. (Figure 6-(1) and (2))

bundle adjustment algorithm, which is normally used for

multi-view stereo, is applied to a projector-camera system. Step 2 Each of the 3D points has corresponding 2D points
The actual process is as follows. First, correspondences on the image planes of the camera and the projector

between 3D points of range images captured from differ- from which it is reconstructed. Using this information,

ent viewpoints are searched (Section 4.3). Each of the the correspondences between the 2D points on the im-

3D.p0|nts IS assougted with a par of 2D pqlnts_ from a age planes from different viewpoints can be estimated
projector-camera pair from which the 3D position is calcu- from the correspondences between the 3D points esti-

lated. Thus, correspondences between 3D points of differ- : .
: - . ) . 1. (F -
ent viewpoints determine a set of corresponding 2D points mated in Step 1. (Figure 6-(3))

on the image planes of the projector and the camera withstep 3 Since the projector is an inverse camera and can-

the.viewpoints. Then, the calibration parameters of the not obtain correspondences, they can be obtained by
projector-camera system and the 3D positions of the sam-  decoding the corresponding point on the image plane
ple points are optimized simultaneously by minimizing the of the camera from the captured image sequence of a

errors between the projection of estimated 3D points and coded structured light. (Figure 6-(4))
the coordinates of the 2D points that are associated to it,
using the same algorithm with a normal bundle adjustment  Steps 1 to 3 are repeated for all the sample points to ac-

(Section 4.4). The 3D shapes are reconstructed using th%uire the correspondences on the image planes.
updated parameters, and using them, new correspondences

are searched (Section 4.5). All the processes are repeated.4. Modified bundle adjustment for projector-
until changes of the parameters all become lower than fixed camera systems

values. Next, the sampled 3D points are all projected onto the

) ) ) image planes of the projector and the camera, and the

4.2. Sampling of points for bundle adjustment sum of the respective squared errors between the projected
Because the bundle adjustment optimization is nonlin- points and the corresponding 2D points is minimized (Fig-

ear, when the number of estimated parameters increasesyre 7). This process is a modified version of bundle adjust-

the processing time greatly increases together with the in-ment; the modified point of the proposed method from the
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normal bundle adjustment is that the relative position be- Figure 7. Residual error.

tween the projector and the camera is fixed, whereas all the
positions of the projector and the camera can be free with Based on the formulation, the error vecty;(x) for
each other for normal bundle adjustment. This constraintpoint: and camerg, and the error functiorZ(x) are de-
is a simple representation of the fixed relative relationship fined as follows:

between the projector and the camera, and it helps to obtain ¢ (x) c

stable results. £ (%) = [ Wig\x } _ { Vi } ©)

Let the estimated 3D point of the set of corresponding Wi v
points obtained from théth sample point be represented

K
asP; in the object coordinates. Then, its projection on the . N 2
image planes is expressed as a 2D vector Bx) = z; 221 5l @
=1 j=
uG;(x) = Prof;(R{P ; +t9), (1) wherev$; andv? ; are the coordinates on the screens that

. . correspond ta€ . (x) andu® . (x , respectively.
WhereRC; and t? are the rotation and the translation of P 4 (%) i.d (%) P y
the rigid transformation that converts the object coordinates4.5. Dense Stereo Reconstruction

into those of camerg, Proﬁ is the projection of cam- From the bundle adjustment process, motion parame-

era;)j a”O,' x 1S da Yectc&;.that mclude_s ?” dthe kp])ar_am.eters ters between different viewpoints and the extrinsic param-
t(_) e estimated. In addition, vectsrinclu es the |.ntr|n- eters between the projector and the camera are obtained.
sic parameters of the camera and the projector (in the eX-—rparefore we can use the extrinsic parameters to recon-

periment they are the focal length of the camera and thestruct dense 3D points by ordinary stereo method for all the
focal Ienth_ of the prOJec.tor), the parameters that ,repre'viewpoints. Since the positional relationships between the
sent the rigid transformation from the object coordinates ,yio tor and the camera are changed and the reconstructed
;nzofgge_?émfi%a(tcojgrﬁ'ni‘%is) V\tlrl1t2 :2; tﬁ/xecgggict)ir:) :L?g:gerashgpes are modified, the cprrespon_dencqs between the 2D
o oKD ) " points on image planes of different viewpoints are changed,
camera and the prOj%CtOf f|>§3ed for all the viewpome., and thus, should be updated. We re-estimate the correspon-
extrinsic parameterR*™ andt™ , and the 3D locations of dences by the method described in section 4.3. The final

sample points Py, ..., Pz ). Kis the number of projector- o, 4ion s obtained by repeating the whole processes until
camera pairs (i.e., number of viewpoints), dni the num- a residual error stop decreasing

ber of sample points.
Because the selection of the target object coordinatess. Experiments
is arbitrary, the conversion paramet®$/, t5 for the tar-

get object coordinates and the coordinates for camera 5.1. Evaluation using synthetic data

fixed. In order to verify the effects of the proposed method,
Similarly, the point wher; is projected onto projector We performed experiments using simulation data and actual
jis data, and evaluated the proposed method.
First, we used a polygon model of a rabbit for the exper-
u’;j(x) = Proj’;(RE(R?Pi + tC;) +t7), 2 iment. The extrinsic parameters for the projector-camera

system were set to predetermined values, and the measure-
where Proﬁ; is projection of projectoy. ments and simulated input data were then synthesized. As
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(a) Before optimization (b) After optimization
Figure 10. Registration errors of simulation data.
(a)Data with error (b)Shape after optimization Table 1. Residual errors between shapes of simulation data.
Figure 8. Simulation data result of optimization. Mean error

Before optimization| 3.45 x 10~!
After optimization | 0.11 x 10~*

=2

(a)Data with error (b)Shape after optimization
Figure 9. Simulation data result of optimization (closeup view).

for the resulting synthetic data, the initial values for the in-
trinsic parameters were set as the focal length parameters of  gigyre 11. (Left) the target scene and (right) initial shape.
the camera by applying a 10% error. The extrinsic parame-
ters of the projector-camera system were unknown. Bundle
adjustment was then performed using the proposed method.
Accordingly, the initial values of the extrinsic parameters as shown in Figure 11 (left). Multiple measurements were
were estimated using self-calibration. The shapes recontaken while moving the projector-camera pair. We tested
structed with these parameters as well as the results regisreconstruction using the proposed method without perform-
tered using the ICP algorithm are shown in Figure 8 (a) anding any preliminary calibration except intrinsic parameter
9 (a). We can see that the shape was distorted due to thealibration. Therefore, the initial values of the extrinsic
10% error applied to the focal length, and could not be reg- parameters between projector and camera were estimated
istered correctly. using self-calibration. The shape obtained from the mea-
The results of applying the proposed method to this datasurements is shown in Figure 11 (right). As we can see in
are shown in Table 1, and in Figure 8 (b) and 9 (b). Be- Figure 12(a), before bundle adjustment was performed, the
cause the values comprise simulation data and have no uniestimation errors in the extrinsic and intrinsic parameters
as a reference, the distance from the camera to the center gfrevented multiple shapes from being registered correctly.
gravity of the target object was calculated, and it W&36. The results of using the proposed method with this data are
We can see that by using the proposed method, the residshown in Table 2. Also, with regard to post-parameter cor-
ual error in the shape has been reduced. Figure 10 shows gection using the proposed method, Figure 12(b) shows a
visualization of the error in the shape, where the darker themagnified image of the overlapping sections of the shape.
shading, the larger the error is. Areas with especially large We can see that the application of the proposed method has
error are colored in red. The threshold value for the color- reduced the deviation during registration. Figure 13 shows
ing to turn red i90.0025. From this figure, we can see that a visualization of the error in the shape, where the darker
the error in the shape was reduced. the shading, the larger the error. Areas with especially large
error are colored in red. The threshold value for the color-
ing to turn red is 0.04m. From this figure, we can see that

Next, an experiment was performed using data mea-the error in the shape was reduced, and the distortion was
sured from 11 directions of the target object (plastic toy), removed.

5.2. Experiment using real object (Plastic toy)
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Figure 14. Real data: (left) the target scene and (right) calibration

box.
(a)Before optimization (a)After optimization Table 3. Residual errors between shapes of real data (Unit of fig-
Figure 12. Registration result of real data (plastic toy with closeup Ures ism?).
view). Mean error

before optimization| 3.22 x 10~*
after optimization | 1.99 x 10~*

ure 14 (right). Since the calibration object was small rel-
ative to the size of the room, the image of the object in a
captured image was also small. Therefore, the precision of
the initial values of the estimated extrinsic parameters was
not enough accurate for registration. The shape obtained
from the measurements is shown in Figure 15, where (a) is
atexture-mapped example in the case when all of the shapes
are registered, and (b) shows the shading for each shape by
color. We can see that the shapes from each view are dis-
torted due to the low precision of the intrinsic and extrinsic
parameters of the projector-camera system, which prevents

Table 2. Residual errors between shapes of real data (Unit of fig-the registration from being performed correctly. The results

(a) Before optimization (b) After optimization
Figure 13. Registration error of real data (plastic toy).

ures ism?). of using the proposed method with this data are shown in
Mean error Table 3 and Figure 16. When first registered by ICP, there

Before optimization| 2.62 x 10~ was deviation in the shape caused by the errors in the in-

After optimization | 1.24 x 10~3 trinsic and extrinsic parameter areas. The proposed method

succeeded in reducing the deviation in the shape and was
_ . _ . able to successfully perform registration without deviation.
5.3. Experiment using wide scene (Room with sofa)  Figure 17 shows a visualization of the error in the shape,

Next, an experiment was performed using data measured'nere the darker the shading, the larger the error. Areas
from three directions of a complex scene that included mul- with especially high error are colored in red. The threshold

tiple objects (a sofa, a sled, and a Styrofoam cylinder) asV&lue for the coloring to turn red is 0.02). We can see
shown in 14 (lef). The active stereo method based on that t_he error in the shape in each figure was reduced and
pattern coding was used for the measurements. A fixedthe distortion was removed.

projector-camera set was used; thus, the relative position .
of the projector and the camera does not change. Multi—6' Conclusion

ple measurements were conducted while moving the fixed The method proposed in this paper applied the multi-
projector-camera pair. The baseline between the projectowview reconstruction approach for a camera system to a
and camera was approximately 30 cm. The extrinsic pa-projector-camera system. This resulted in increased pre-
rameters of the projector-camera system were estimated ircision of the intrinsic and extrinsic parameters as well
advance using a calibration box to be 20 gn20 cmx 20 as the motion parameters for different viewpoints for the
cm, and these were set as the initial values. Also, in orderprojector-camera system. Thus, the proposed method al-
to measure the complex scenes in this experiment, measurdows the reconstruction of wide scenes and the entire shape
ments were taken while the focal length of the projector- of the objects with high accuracy. Future work should ex-
camera system was changed. The image used for calibraamine the acquisition of correspondences with high preci-
tion, which was captured by the actual projector-camerasion using shape features and the improvement of process-
system used to take the measurements, is shown in Figing speed.



(a)All shapes with texture
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(b)All shapes with shading [6]
Figure 15. Acquired 3D data of complex scenes.
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(c)Before optimization (d)After optimization

(view 2) (15]

Figure 16. Registration result (complex scenes with closeup view).
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