Challenges on 3D shape acquisition for VR/AR/MR systems

2008 September 8th Oxford Brookes University, Wheatley

Hiroshi Kawasaki (Saitama University)
joint research with
Katsushi Ikeuchi (University of Tokyo) and Ryo Furukawa (Hiroshima city University)

Current research projects

- City modeling project (ITS) $\begin{aligned} & \text { granted by motor company, } \\ & \text { map company and government }\end{aligned}$
- Active 3D scanning granted by MOF
- Texture acquisition and analysis granted by SCOPE
- Digital archiving project (Ikeuchi Lab.)

Research and project matrix					
	Acquisition	Modeling	Rendering		
	Geometry	Photometry	Geometry	Photometry	

Research and project matrix					
	Acquisition		Modeling		Rendering
	Geometry	Photometry	Geometry	Photometry	
$\begin{array}{\|l} \hline \begin{array}{l} \text { City modeling } \\ \text { (TTS) } \end{array} \\ \hline \end{array}$	\triangle	(\triangle	©
Active 3D scanner	©		©		
Texture analysis		©		©	\bigcirc
Digital archiving	\bigcirc	\triangle	©	\triangle	

Research and project matrix					
	Acquisition		Modeling		Rendering
	Geometry	Photometry	Geomery	Photometry	
	\triangle	©		\triangle	©
Active 3D scanner	©		©		
Texture analysis		©		©	©
Digital archiving	\bigcirc	\triangle	\bigcirc	\triangle	

Demo - virtual driving

Current research topics

- Accurate registration of camera position using images (SfM for omini-cameras)
- Real-time rendering using GPU
- Noise removal (reflection on windows, pedestrian and cars)

Why active 3D scanner?

- Passive system
©Input \rightarrow only images
© Unstable
© Sparse 3D points
- Active system
()Stable and high accuracy
(3)Dense 3D points
© System \rightarrow expensive and heavy

Because...

- Passive system
© Input \rightarrow only images
© Unstable
(2)Sparse 3D points

Required for VR and

- Active system other actual systems!
©Stable and high accuracy
© Dense 3D points
© System \rightarrow expensive and heavy

Active Stereo 3D scanner

() Stable

() Dense 3D points
(: Complicated and expensive system (lasers, mechanical actuator and laser sensor)

Active Stereo 3D scanner

© Stable

() Dense 3D points
(:)-Complicated and expensive system (lasers, mechanical actuator and laser sensor)
Eliminate them by computer vision techniques!

Active Stereo 3D scanner
© Stable
(ㄹ) Dense 3D points
(:)-Complicated and expensive system (lasers,
mechanical actuator and laser sensor)
Eliminate them by computer vision techniques! $-$
Hand-held 3D scanner

What is a hand-held 3D scanner?

Hand-held scanner with single cam.
© Simple configuration
© No precision devices
© Online-calibration
Δ Frames or planes are required [david'06]
\triangle LED markers required [kawasaki' 03]
Can we eliminate all additional devices?

Question 2

- How about this?

Maybe?

Outline of 3D reconstruction

Upgrade to Euclidean solution

- Metric constraints from laser planes

Outline of dense 3D reconstruction

Summary of the proposed method

- Temporal accumulation
- O Self-calibration for hand held 3D scanner
- Δ take times

\rightarrow Can we make enough intersections at one time?

Self-calibration for Coded Structured light

- problem definition -
- Input :- camera params (focal length, etc.) -two index images
- Output:- 6 params (R\&T)

Extended techniques

- Wide range reconstruction by pivot scanning
- Simultaneous reconstruction method

Extended techniques

- Wide range reconstruction by pivot scanning
- Simultaneous reconstruction method

Extended techniques

- Wide range reconstruction by pivot scanning
- Simultaneous reconstruction method

Live Demo

Self calibrating structured light

Only a projector and a camera
Δ (Only several patterns, but) still take times
For actual VR systems, moving object should be captured
\rightarrow Can we eliminate several patterns to just "one"?

Previous method

- Spatial encoding method
\bigcirc Single pattern
\times Low resolution

Algorithm overview

Coplanarity constraint (1)

All points on a detected curves are on the undetermined common plane. $a_{1} x+b_{1} y+c_{1} z+1=0$
 $a_{1} P_{x}+b_{1} P_{y}+c_{1} P_{z}+1=0$

$$
\begin{aligned}
& \text { Planes for vertical pattern } a_{1} Q_{x}+b_{1} Q_{y}+c_{1} Q_{z}=0 \\
& { }^{4} \text { Correspondences are unknown }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Correspondences are unknown } \\
& \text { Known (calibrated) vertical planes }
\end{aligned}
$$

Known (calibrated)
θ
camera

Coplanarity constraint (2)
For horizontal patterns $\quad d_{1} x+e_{1} y+f_{1} z+1=0$
All planes go through the common line L_{n} !
$d_{1} P_{x}+e_{1} P_{y}+f_{1} P_{z}+1=0$
Planes for horizontal pattern $d_{1} Q_{x}+e_{1} Q_{y}+f_{1} Q_{z}=0$
-.... Correspondences are unknown
Known (calibrated) horizontal planes
${ }^{L_{v}} L_{i n}\left(R_{x}, R_{y}, R_{z}\right)$
\square
camera

Intersection constraint (3)

Thanks.

- Any questions or comments?
- Web sites:
- htep:/hwww.cgvics.saitama-w.ac.ip
- e-mail:
- kawasaki@cgv.ics.saitama-u.ac.jp

Texture acquisition device

- Single camera (1D)
- Light stage v.1-v. 3 (2D)

Surface Reflectance Sampler [Aritaki, Kawasaki et.al. ICIP01]

- Full automatic 4D data capturing machine

