Challenges on 3D shape acquisition for VR/AR/MR systems

2008 September 8th Oxford Brookes University, Wheatley

Hiroshi Kawasaki (Saitama University) joint research with Katsushi Ikeuchi (University of Tokyo) and Ryo Furukawa (Hiroshima city University)

Current research projects

- City modeling project (ITS) granted by motor company, map company and government
- Active 3D scanning granted by MOF
- Texture acquisition and analysis $% \left({{{\rm{granted}}} \left({{{\rm{granted}}} \right.} \right)} \right)$
- Digital archiving project (Ikeuchi Lab.)

	Acqu	isition	Mod	Rendering	
	Geometry	Photometry	Geometry	Photometry	
City modeling (ITS)	Δ	0		Δ	Ø
Active 3D scanner	0		0		
Texture analysis		0		Ø	0
Digital archiving	0	Δ	0	Δ	

	Acqu	isition	Moo	leling	Rendering	
	Geometry	Photometry	Geometry	Photometry		
City modeling (ITS)		Ø		Δ	Ø	
Active 3D scanner	0		Ø			
Texture analysis		٥		0	0	
Digital archiving	0	Δ	Ø	Δ		

Research and project matrix								
	Acqu	isition	Mod	leling	Renderin			
	Geometry	Photometry	Geometry	Photometry				
City modeling (ITS)		O		Δ	O			
Active 3D scanner	O		0					
Texture analysis		Ø		Ø	Ø			
Digital archiving	0	Δ	0	Δ				

Several problems

•Quality (depend on number of images) •No texture for upper bound

Current research topics

- Accurate registration of camera position using images (SfM for omini-cameras)
- Real-time rendering using GPU
- Noise removal (reflection on windows, pedestrian and cars)

	Acou	isition	Mod	Rendering	
	Geometry	Photometry	Geometry	Photometry	Rendering
City modeling (ITS)	Δ	O	Geonicaly	Δ	Ø
Active 3D scanner	O		O		
Texture analysis		Ø		Ø	Ø
Digital archiving	0	Δ	0	Δ	

Why active 3D scanner?

- Passive system
 - ©Input→only images ⊗Unstable
- Sparse 3D points
- Active system ©Stable and high accuracy
- ©Stable and high accurac ©Dense 3D points
- System→ expensive and heavy

Because...

- Passive system ©Input→only images ©Unstable
 - © Onstable © Sparse 3D points Active system
- Active system ot ©Stable and high accuracy
 - ©Dense 3D points ⊗System→ expensive and heavy

Active Stereo 3D scanner

- 😊 Stable
- C Dense 3D points
- Complicated and expensive system (lasers, mechanical actuator and laser sensor)

Active Stereo 3D scanner

😊 Stable

- C Dense 3D points
- Complicated and expensive system (lasers, mechanical actuator and laser sensor)

Eliminate them by computer vision techniques!

Outline of 3D reconstruction	
Detect laser lines from video	
Constraint equations from intersections	
3D shape reconstruction by solving the simultaneous equations	

Out	line of dense 3D reconstruction
	Detect laser lines from video
	Projective reconstruction from intersections
	Euclid upgrade using metric constraints
	Dense shape reconstruction

Experiments

Simulation data

Real data

Proposed method

- Only require a line laser and a single camera
 - General solution for "Shape from Coplanarity"Any other applications?

DEND WOVIE

Extended techniques

- · Wide range reconstruction by pivot scanning
- Simultaneous reconstruction method

Extended techniques

Wide range reconstruction by pivot scanningSimultaneous reconstruction method

Extended techniques

Wide range reconstruction by pivot scanningSimultaneous reconstruction method

Live Demo

Self calibrating structured light

O Only a projector and a camera Δ (Only several patterns, but) still take times

For actual VR systems, moving object should be captured

 \rightarrow Can we eliminate several patterns to just "one"?

Examp	ple of f	ormulati	on
$n \sim 1 \sim 10^{\circ}$	vertical $\mathbf{v}_1 \bullet \mathbf{o}_p = -1$ $\mathbf{v}_1 \bullet \mathbf{l}_p = 0$ $\mathbf{v}_2 \bullet \mathbf{o}_p = -1$ $\mathbf{v}_2 \bullet \mathbf{l}_p = 0$ $\mathbf{v}_3 \bullet \mathbf{o}_p = -1$ $\mathbf{v}_2 \bullet \mathbf{l}_p = 0$	horizontal $\mathbf{h}_i \bullet \mathbf{o}_p = -1$ $\mathbf{h}_i \bullet \mathbf{l}_k = 0$ $\mathbf{h}_2 \bullet \mathbf{o}_p = -1$ $\mathbf{h}_2 \bullet \mathbf{l}_k = 0$ $\mathbf{h}_3 \bullet \mathbf{o}_p = -1$ $\mathbf{h}_3 \bullet \mathbf{l}_k = 0$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
All equations are \rightarrow can be solved	linear	taneous equ	uations

[0_	0	0	0	0	0] [-1]
1	0	0	0	0	0	0 Vertical
	••• [\mathbf{v}_1 \mathbf{I} L_v
0	0	0	0 ,	0	0	² -1 Horizonta
						$ \mathbf{v}_3 = :\mathbf{I}$ L_h
u _{L1}	0	0	- u _{1,1}	0	0	n ₁ 0
u _{1,2}	0	0	0	- u _{1,2}	0	h ₂ 0
						[h ₃] Intersection

$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	I, 0 u ₁₁ u ₁₂	0 0 0 0	0 0 0 0 0 0	0 0 _p 0 	0 0 0 - u _{1,2}	$\begin{array}{c} 0 \\ \cdots \\ 0 \\ \cdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \mathbf{h}_{1} \\ \mathbf{h}_{2} \\ \mathbf{h}_{3} \\ \mathbf{h}_{3} \\ \mathbf{h}_{3} \end{array}$	0 -1 -1 0 0
--	---	---	------------------	----------------------------	--------------------------------------	-----------------------------------	---	-------------------------

Experiments

Reconstruction process

Live demo

What's next?

- Infrared projector for VR/MR systemsRecognition human behavior by 3D video
- Ultra high-speed 3D scan

Thanks.

- Any questions or comments? • Web sites:
- e-mail:
- kawasaki@cgv.ics.saitama-u.ac.jp

Rese	arch	and pr	oject	matri	х
	Acqu	isition	Mod	leling	Renderin
	Geometry	Photometry	Geometry	Photometry	1
City modeling (ITS)	Δ	0		Δ	O
Active 3D scanner	O		Ø		
Texture analysis		0		O	O
Digital archiving	Ø	Δ	Ø	Δ	

Real-time rendering results

Discussion

- O BTF efficiently capture, compress and render 3D objects
- × Intricate shaped object is still difficult to render

14 .

Microfacet Billboarding

Demo Movie

Eurographica Borkahop en Rendering 5. Yamazaki, R. Sagawa, H. Kawacaki, K. Ikeuchi, M. Sakauchi

Thanks.

- Any questions or comments? • Web sites:
- e-mail: - kawasaki@cgv.ics.saitama-u.ac.jp