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Abstract. Video camera is now commonly used and demand of captur-
ing a single frame from video sequence is increasing. Since resolution of
video camera is usually lower than digital camera and video data usually
contains a many motion blur in the sequence, simple frame capture can
produce only low quality image; image restoration technique is inevitably
required. In this paper, we propose a method to restore a sharp and high-
resolution image from a video sequence by motion deblur for each frame
followed by super-resolution technique. Since the frame-rate of the video
camera is high and variance of feature appearance in successive frames
and motion of feature points are usually small, we can still estimate scene
geometries from video data with blur. Therefore, by using such geomet-
ric information, we first apply motion deblur for each frame, and then,
super-resolve the images from the deblurred image set. For better result,
we also propose an adaptive super-resolution technique considering dif-
ferent defocus blur effects dependent on depth. Experimental results are
shown to prove the strength of our method.

1 Introduction

Demand for retrieving a high quality single image from video sequence is in-
creasing, such as surveillance and handheld video capture and so on. Since im-
age quality of video camera is usually lower than digital camera, simple frame
capture is often insufficient for actual purpose. Although the main reason of
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the low quality of video data is a low resolution of video camera, motion blur is
another important reason of degradation; it commonly occurs because video usu-
ally captures moving object, whereas, still camera mainly captures static scene
only. Another problem on quality of video data is narrow depth of field; it is also
common because video camera requires high frame-rate with fast shutter speed,
resulting in wide aperture. Because of the narrow depth of field, the scene other
than target object is blurred by defocus blur. Thus, simple frame capture can
produce only low quality image and image restoration technique is inevitably
required.

To deal with the problem mentioned above, hybrid camera systems are pro-
posed [1, 2]. However, since those systems require additional sensors, the systems
become complicated and the technique cannot be applied for common video
data. On the other hand super-resolution technique using several input frames
are proposed. However, most of them does not consider motion blur and only
several papers take the problem into account; they treat motion blur as noise
[3]. Therefore, quality of image restoration is limited.

In this paper, we propose a method to restore a sharp and high-resolution
image from a video sequence by applying a motion deblurring technique for each
frame followed by super-resolution technique for multiple frames. To conduct
a motion deblur from an image, motion information is required. Since typical
device of deblurring techniques is a still camera, they assume long exposure
time and complicated camera motion; thus, sophisticated blind kernel estimation
technique is usually required. To the contrary, with video camera, motion is
usually small and simple for each frame. One important problem for video is
that several objects move independently. In our method, by taking account of
such feature of video camera, we propose a motion deblurring technique using
optical flow of the scene with scene segmentation technique.

In terms of super-resolution of the image sequence, sub-pixel registration is
required and it is usually difficult to achieve with blurry image. Since motion
blur is reduced by our method in the first step, the problem is greatly reduced. In
addition, since the scene contains several independently moving objects, segmen-
tation and area based registration for each segment is required; it is efficiently
solved by our pixel-based plane approximation technique. Further, image quality
is further improved by considering the different defocus blur for each segment
dependent on different depth with our adaptive super-resolution technique.

2 Related work

In terms of deblurring techniques for motion blur, since the blur is a convolution
process, restoration technique has been proposed as a deconvolution technique
for known kernel [4, 5]. If the kernel is unknown, such condition is common for
usual photos, the problem is ill-conditioned and it cannot be solved without ad-
ditional information [6]. For simple and straight-forward solution, an additional
sensor is used to estimate the blur kernel [1, 7]. Recently, blind deconvolution
techniques using the information of natural scene, i.e., “heavy tailed distribu-
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tion in the gradients” are proposed [8–11]. We also use the same knowledge to
estimate the motion blur kernel.

Generally, the main reason of motion blur is assumed to be a camera motion,
such as camera shake, thus, previous technique usually uses a single blur ker-
nel for deblurring. Currently several researches are proposed considering object
motion in the scene [12, 7]. In addition, more general cases, such as an indepen-
dent blur kernel for each depth of an object is proposed [13]. We also estimate
independent blur kernel for each segment.

In terms of super-resolution techniques, reconstructing a high-resolution im-
age from multiple low-resolution images is intensively researched [14–16]. In those
techniques, it is assumed that scenes are either static or dynamic, but consist of
single depth or planar objects with little motion, and the camera is also assumed
to be static. With such assumptions, registration between frames can be simpli-
fied and it can be done with sufficient accuracies with 2D affine or homography
transformation. However, for applying techniques to more general purposes, it is
necessary to allow 3D scenes containing multiple independently moving objects,
non-rigid motion objects (e.g. cloths), etc. With existing super-resolution tech-
niques, it is difficult to achieve this, because of significant appearance changes
caused by objects’ motion and viewpoint changes. To perform super-resolution
for such objects or scenes, 3D information should be considered. Tung et al.
[17] have applied super-resolution technique to construct a high-resolution 3D
video. However, the technique is based on approximating 3D objects by trian-
gular patches, and thus, accurate and dense 3D data is required; it cannot be
easily acquired in general.

The technique to achieve both motion deblur and super-resolution is also
proposed by Tai et al. [2]. The central idea is similar to ours, however, the
method to estimate the motion of the scene is totally different; we estimate it
only from video data, whereas Tai et al. use additional device as hybrid system.

3 Algorithm overview

A simple solution to restore the images that are degraded by blur kernels per
each frame and object is to prepare each kernel for calculation. However, the
considered input is a video sequence captured by a handheld camera, and thus,
such blur kernels are not usually given. In this paper, since the input is a video
sequence, we estimate those blur kernels for each segmented region of objects in
the scene; those regions are detected by segmentation using optical flow field.

In terms of motion deblurring, we assume that the blur of the region to be
combination of motion blur and defocus blur, where defocus blur is constant
for each region. With such video data, feature points are also blurry because of
motion blur and it is difficult to achieve high accuracy to detect them, however,
optical flow field can be accurately acquired with area based method. Therefore,
we use the optical flow field to estimate motion blur kernel.

On the other hand, restoration of low resolution image with defocus blur
has been researched for long time, typically via super-resolution techniques; it is
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known that the quality is low if only a single image is used, and thus, many tech-
niques using multiple images and MAP estimation are proposed to achieve rea-
sonable results [15, 16]. To super-resolve images from low-resolution and blurred
images, sub-pixel registration is required. In previous methods, where the scene is
assumed to be a single plane, accurate registration can be easily achieved. How-
ever, natural scenes consist of multiple dynamic 3D objects, and thus, achieving
an accurate and robust registration is not easy. In this paper, we propose a plane
based registration method to achieve sub-pixel accuracy for registration of all
the pixels in the images.

As already described, we assume that image blur to be combination of mo-
tion and defocus blur. Since we assume that there are several objects at different
depths in the scene, all objects do not suffer from the same defocus blur. There-
fore, we propose an adaptive deblurring method to change kernels for defocus blur
adaptively for each object. Certainly, estimating blur kernels for each object is
not easy, therefore, for simplicity, we assume in this paper that the kernels of
defocus blur can be described as one-parameter point spread functions (Bessel
function). Since we consider moving objects in the scene, defocus blur kernels
may vary for each frame. However, since we use between 20 and 40 frames for
super-resolution, i.e., just 1 to 2 seconds of video, we assume that large changes
of defocus blur kernels are unlikely, and thus, we use the same kernel for the
process. Actual algorithm is as follows.

Fig. 1. Flow of the deblurring process.

First, we estimate optical flow field of the input image sequence by using
block matching technique. (Fig. 1(a)). The optical flow field is segmented by
graph cut method, where each of the regions include almost constant flow vec-
tors (Fig. 1(b)). Then, an initial blur kernel is estimated for each segments (Fig.
1(c)). Simple super-resolution may not bring good results when the input images
contain motion blur, because it is difficult to achieve high accuracy registration
with such blurry images. Therefore, motion deblurring technique is applied be-
fore a super-resolution (Fig. 1(d)). Finally, these frame-wise deblurred results are
further improved by using super-resolution technique, simultaneously improving
the resolution and defocus blur (Fig. 1 II).
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4 Motion deblurring for multiple moving objects

In this paper, we estimate the motion of each region by segmenting the optical
flow field, and use the flow vectors for the regions to estimate motion blur kernels.
For simplicity, we model image blur as a convolution of a line-shaped motion blur
kernel and one-parameter isotropic defocus blur kernel. Certainly, a line-shaped
motion blur kernel sometimes results in an insufficient quality, especially for a
large camera motion (e.g., severe ringing effects), however, camera motion is
usually small and simple in our research, because all images are captured by
video camera where a shutter speed is usually faster than 1/60 to keep 30 fps,
and such simple kernel can achieve enough restoration in reality.

As the line-shaped motion blur kernel estimation, we use a direction of op-
tical flow for its direction, and the knowledge of the derivatives histogram of
natual scene to estimate the scaling parameter; note that such scaling parame-
ter estimation is currently common and used by several research groups [18, 10].
The actual kernel estimation proceeds as follows:

1. The optical flow field is estimated for all the images based on block matching.
2. Input images are segmented into regions, each of which has almost constant

motion vectors.
3. For each region, a line-shaped motion blur kernel is estimated from optical

flow and the derivatives histogram of the image.
4. Motion blur is reduced by deconvolution algorithm by using the line-shaped

blur kernels

These processes are explained in the following sections in detail.

4.1 Segmentation of blurry image sequence

An input data of the proposed method is a captured sequence of images. The
image may be captured by a static or moving camera. The captured scene may
include multiple objects that may be static or moving. Therefore, segmentation
for each object is required. Since input image is blurry, feature based method
may not work, and thus, area based approach is used. In this paper, optical flow
field is obtained by pyramid based block matching method. Then, multi-value
graph-cut method is applied to those flow field. In our implementation, we put a
large value on a direction rather than a length of the optical flow for data-term
of graph-cut from our experience of several experiments. We also assume only 3
to 5 segments in the scene for fast calculation.

4.2 Blur kernel estimation using optical flow

For each extracted region, blur kernel is estimated. In our research, we assume
that the shape of the motion blur kernel to be linear as mentioned above. We use
a direction of optical flow for its direction, and estimate the scaling parameter
by using the knowledge of the derivatives histogram of natural scene; i.e., the
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derivatives histograms of the scene for all directions are usually the same in
natural scene. Therefore, actual algorithm is as follows.

First, we calculate the derivatives histogram along optical flow vector direc-
tion. Then, we add blur to the perpendicular direction by changing the kernel
size so that the both derivative histograms become similar. Fig.2(a) and (b) show
the both derivatives histogram along optical flow direction and its perpendicu-
lar direction. Fig.2(c) shows the derivatives histogram along the perpendicular
direction after applying the estimated blur kernel. We can clearly see that the
shapes of Fig.2(a) and (c) look similar.

(a) Derivatives histogram
along optical flow

direction

(b) Derivatives histogram
along perpendicular

direction to the optical
flow

(c) Derivatives histogram
along the perpendicular
direction after applying

motion blur
Fig. 2. motion blur kernel estimation.

4.3 Motion deblurring for each segment

In terms of deconvolution algorithm, several techniques exist; Iterative Back
Projection[5] is applied in our approach.

5 Super-resolution technique for multiple depth

We adopt a multi-frame super-resolution technique to restore both low-resolution
and defocus blur. To realize an efficient removal of defocus blur, we first carry
out a piecewise planar segmentation of the scene, in order to accomplish accurate
registration and set appropriate blur kernels dependent on depth in 3D scenes.
The segmentation algorithm basically consists of two steps; (1) plane candidate
generation by using feature tracking results and (2) pixel-based segmentation
by minimizing re-projection errors. For super-resolution, we use a MAP image
reconstruction formulation with the registration result for each segment.

5.1 Estimating candidate planes based on feature point tracking

A number of studies have already been reported related to the extraction of
planes from the scene for the purpose of 3D reconstruction [19–21]. In these stud-
ies, planar areas are extracted as patches by clustering feature points. However,
in practice, it is often difficult to perform an accurate plane-based approxima-
tion because individual feature point tracks are easily affected by outliers, the
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aperture problem and view-dependent appearance changes, even if the global
ego-motion estimation is accurate. In addition, since features are often not de-
tected along object boundaries, patch creation is another difficult problem.

In this paper, we propose a pixel-based plane estimation which is more suit-
able than a patch-based technique. More specifically, instead of dividing the
scene into patches, candidate planes are first extracted, each of which is defined
by a group of tracked feature points included in a single plane. To achieve good
results, a sufficient number of candidate planes should be extracted to approx-
imate the 3D scene. A simple solution is to extract as many planes as possible
from all combinations of the feature points. On the other hand, the smaller the
number of candidate planes, the more efficient the computation. Therefore, we
propose an efficient method to reduce the number of candidate planes to ap-
proximate the 3D scene by using the knowledge that neighboring feature points
usually belong to the same plane.

Our candidate plane estimation method is described in Algorithm 1. First,
corresponding feature points between input frames are computed. Then, an ini-
tial candidate plane which described by feature point tracks is generated. Using
the tracks, the homography matrices between the base frame and the other
frames are calculated. Next, the candidate plane is updated. Feature points
whose evaluation values are less than the threshold value (0.2 pixel in our case),
are added to the plane. We use the average of the re-projection errors of all the
corresponding points as the evaluation value. And then, the homography matrix
calculation and updating the candidate plane are iterated until the feature point
tracks on the plane are converged. Repeating this manner, candidate planes
describing the scene are obtained. Fig. 3 shows an example for the generation
of three groups, where the black points represent the feature points which are
already calculated or assigned to some planes, and the white points represent
unselected and unlabeled points.

Fig. 3. Candidate plane detection.

5.2 Pixel-based segmentation by minimization of re-projection
errors

Since the candidate planes (groups of feature points each of which is included in a
single plane) extracted by the aforementioned method are represented as groups
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Algorithm 1 Candidate plane estimation.
1: X is defined as the set of all corresponding feature point tracks across input frames.
2: P (x) is defined as a predicate that is true if point track x is not selected and

unlabeled.
3: while ∃x ∈ X; P (x) do
4: Select a feature point track a(⊆ {x ∈ X; P (x)}) and the k nearest neighbors

b(⊆ X) (in this paper k := 7).
5: A(0) := ϕ, A(1) := a ∪ b, i := 1
6: while A(i) ̸= A(i−1) do
7: Compute the homography matrix H of A(i) for each frame.
8: A(i+1) := ϕ
9: for ∀y ∈ X do

10: if Adequateness of H for y ≥ threshold then
11: A(i+1) := A(i+1) ∪ y
12: end if
13: end for
14: i := i + 1
15: end while
16: A(i) is a group of feature point tracks residing in the same plane.
17: end while

of feature points rather than explicit patches, the dense pixel correspondence
is not yet determined at this stage. Since transformation parameters of each
candidate plane between frames are calculated in the previous step, pixel-based
correspondences can be estimated by assigning each pixel to one of the candidate
planes by minimizing the re-projection error using the parameters.

In this paper, the homography matrices obtained from the candidate planes
are used as transformation parameters. Then, the differences of intensity for each
pixel from a reference frame to all other frames are computed, the average of
the differences is stored for each plane, and the pixel is assigned to the plane
for which that average is the smallest. The actual calculation is as follows. We
denote the number of input frames as N , the homography matrix (as obtained
from the i-th candidate plane, i.e., the i-th group of feature points) between
the reference frame and the k-th frame as H(k)

i , and the respective intensity
levels of arbitrary points in the reference frame and the k-th frame as I(·) and
I(k)(·), respectively. Then the following equation is obtained for each pixel in
the reference frame.

îp = arg min
i


∑M

k=1

{
I(p) − I(k)(H(k)

i p)
}2

M

 (1)

Here, M(≤ N) denotes the number of frames for which the pixels were effective
before the projection (in other words, the pixels were within the image), and p
represents a coordinate vector. By finding the minimum projection difference,
each pixel is assigned to plane îp. Note that since we can reject pixels whose
difference measure is large, our method can handle occlusions. The process is
shown in Fig. 4.
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Fig. 4. Plane selection for each pixel.

5.3 Adaptive SR by MAP estimation

We use a maximum a posteriori (MAP) image reconstruction formulation for
multi-frame super-resolution as follows:

X̂ = argmin
X

[
N∑

k=1

||DkHkFkX − Yk||22 + λ||ΓX||22

]
(2)

where Fk is the geometric motion operator between the high-resolution (HR)
frame X and the kth low-resolution (LR) frame Yk, Hk is the defocus blur matrix
representing the camera’s point spread function and Dk stands for the decima-
tion matrix (Fk is previously estimated, see Sec. 5.2). ||ΓX||2 is the Tikhonov
regularization cost function and λ is the regularization parameter. Generally, a
high-pass operator is used as Γ ; we use the Laplacian.

If we assume that all the decimation operations are the same (i.e. ∀k, Dk = D)
and all the blur operations are the same (i.e. ∀k, Hk = H), (2) may be written
as

X̂ = argmin
X

[
N∑

k=1

||DFkHX − Yk||22 + λ||ΓX||22

]
. (3)

We decompose this minimization problem into the following two separate steps,
as suggested in [3].

1. Compute a defocus blurred HR image Ẑ(= HX̂) from the LR images.
2. Estimate the HR image X̂ from the defocus blurred HR image Ẑ.

In this paper Ẑ is calculated by solving the following minimization problem:

Ẑ = argmin
Z

[
N∑

k=1

||DFkẐ − Yk||22

]
. (4)

In the deblurring step, the deblurred HR image X̂ is obtained through the fol-
lowing formulation:

X̂ = argmin
X

[
||W (HX − Z)||22 + λ||ΓX||22

]
. (5)

where W is a diagonal matrix, each of whose diagonal values equals the number
of measurements for one pixel. With this formulation, different blur kernels can
be set to each pixel.
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6 Experiments

6.1 Evaluation of the method using real-data

To test the effectiveness of the method, we conducted experiments using motor-
ized stage. In this data, the scene consists of two planes with texture as shown
in Fig.5(a). We set the nearest plane to be in focus and the other plane undergo
a depth-dependent defocus blur by the camera aperture. We moved the two
objects with different speed and different direction by two different motorized
stages. The super-resolution image (SRI) with our method is shown in Fig.5(i).
We can still observe small ringing effects remaining near edges, however, strong
motion blur is removed and super-resolution is successfully conducted.

Next, we apply the technique to curved surfaces. The result is shown in
Fig.6; in Fig.6(c), we can see that the scene is successfully segmented into several
planes to approximate the curved surfaces. In Fig.6(h), we can clearly see that
the motion blur is removed and super-resolution is successfully applied even if
the shape has no planer area.

6.2 Handheld video data scene

In this experiment, we conducted an experiment using a handheld video camera
as shown in Fig.7(a). The motion deblurred image with our method is shown
in Fig.7(f). We can see that motion blur was successfully removed. The result
of plane segmentation applied on the motion deblurred image sequence and the
final super-resolved image are shown in Fig.7(c) and (h). Even for such natural
sequence captured by handheld video, each plane was successfully segmented
and super-resolution is successfully achieved.

The super-resolution image without motion deblurring is shown in Fig.7(g).
We can clearly see that our method gives the best restoration.

6.3 Multiple moving objects captured by static camera

Finally, we conducted the same experiment with static camera and multiple
moving objects. Fig.8(a) shows example and optical flows of the input data.
Fig.8(f) shows a motion deblurred image and Fig.8(h) shows the final result by
applying adaptive MAP estimation on the motion deblurred images. Fig.8(g)
shows the result of simple super-resolution and we can confirm that our method
achieved the best restoration.

7 Conclusion

In this paper, we propose a method to restore a sharp and high-resolution im-
age from video data captured by a handheld camera in which both independent
motion and defocus blur are observed. The method is based on a motion de-
blurring technique using estimated blur kernels for each frame and object and
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(a)Image capturing scene (b)Optical flows

(c)Segmentation with GC (d)Detected planes for SR

(e) Blur kernels for each
segment (left:motion blur
kernel, right:defocus blur

kernel)

(f)Input image (g)Motion deblurred image

(h)SRI without motion deblurring (i)Proposed method

Fig. 5. Multiple object motion by motorized stage.

super-resolution technique with adaptive defocus blur kernel. A motion blur ker-
nel is efficiently estimated by using optical-flow and natural scene statistics and
motion blur is reduced by a deconvolution algorithm. A defocus blur is removed
by an adaptive MAP estimation technique with pixel-wise plane segmentation
method. We conducted several experiments using real data which successfully
show the effectiveness of our method. Extended research on deforming object
with independent motion blur is our next step.
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(a)Image capturing scene (b)Optical flows

(c)Detected planes for SR

(d)Blur kernels (left:motion blur kernel,
right:defocus blur kernel)

(e)Input image (f)Motion deblurred image

(g)SRI without motion deblurring (h)Proposed method

Fig. 6. Motion deblur and super-resolution for curved surface.
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