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Abstract

3D scanning of moving objects has many applications,
for example, marker-less motion capture, analysis on fluid
dynamics, object explosion and so on. One of the approach
to acquire accurate shape is a projector-camera system, es-
pecially the methods that reconstructs a shape by using a
single image with static pattern is suitable for capturing
fast moving object. In this paper, we propose a method
that uses a grid pattern consisting of sets of parallel lines.
The pattern is spatially encoded by a periodic color pat-
tern. While informations are sparse in the camera image,
the proposed method extracts the dense (pixel-wise) phase
informations from the sparse pattern. As the result, con-
tinuous regions in the camera images can be extracted by
analyzing the phase. Since there remain one DOF for each
region, we propose the linear solution to eliminate the DOF
by using geometric informations of the devices,i.e. epipo-
lar constraint. In addition, solution space is finite because
projected pattern consists of parallel lines with same inter-
vals, the linear equation can be efficiently solved by integer
least square method. In this paper, the formulations for both
single and multiple projectors are presented. We evaluated
the accuracy of correspondences and showed the compari-
son with respect to the number of projectors by simulation.
Finally, the dense 3D reconstruction of moving objects are
presented in the experiments.

1. Introduction

Active 3D scanning methods using just a single image
with static light pattern (a.k.a. one-shot scan) have at-
tracted many people, because of its exclusive advantages,
i.e., it can capture extremely fast motion, such as dynamic
fluid motion or object’s explosion by simply increasing the
frame-rate and the shutter-speed of the camera. Based on
such background, it has been intensively researched and
several products are commercialized recently. For exam-

ple, Kinect [14] is one of the recent successful product with
well-balanced accuracy, resolution and cost effectiveness.
Although Kinect can be efficiently used for the purpose of
motion capture and gesture recognition, 3D quality is not
enough for modeling and inspection. Similarly, other one-
shot scanning techniques are also usually insufficient for
modeling purpose either with resolution, accuracy or sta-
bility.

Recently, grid-based one-shot scanning techniques are
proposed and achieved both high accuracy and stability by
unique encoding technique,i.e. positional information are
encoded into the connectivity of grid lines. However, it
has a severe problem for practical usage that is sparse re-
construction. The main reason of the sparse reconstruction
is that the 3D reconstruction is only realized with detected
curves of grid lines. In addition, if the total amount of con-
nections between detected curves is not enough, shapes can-
not be reconstructed correctly and reconstruction becomes
sparser.

In this paper, we propose the technique to solve the
abovementioned problems to achieve high-density and
high-speed reconstructions of dynamic objects. For solu-
tion, two approaches are presented as follows:

1. Efficient image processing technique to detect contin-
uous regions from a single image.

2. Region based 3D reconstruction method using geomet-
ric constraint to achieve stable and dense reconstruc-
tion.

Thanks to the proposed techniques, all the pixels of contin-
uous region are used for reconstruction to increase density
and stability, whereas only intersection points are used in
the previous grid-based reconstruction. Further, since many
areas which are not connected to other areas by detected
curves are connected together as the single region with our
technique, reconstruction areas increase significantly and
calculation becomes stable. In the experiments, we actually
construct the system, which consists of a single or multiple
projectors and one camera, and successfully reconstructed



the series of entire shape of dynamically moving object and
fluid surfaces. We also conducted both qualitative and quan-
titative evaluations. The contribution of our technique is as
follows.

1. Phase estimation to segment continuous region are ef-
ficiently realized by Gabor filter.

2. Efficient formulation and solution to eliminate DOF of
phase ambiguity using geometric constraint(epipolar
constraint) are proposed.

3. Efficient calculation techniques using integer least
square method to improve solution and stability are
presented.

4. It is shown and proved by experiments that the tech-
nique is new solution for dense and fast motion recon-
struction.

2. Related work

Shape reconstruction techniques using projector and
camera system have been widely researched and developed
[2]. Main issue for projector and camera based 3D scanning
system is how to get correspondences between them. For
solution mainly two methods are known, such as temporal
encoding method and spatial encoding method.

Since techniques using temporal encoding method is
easy to implement, accurate, dense and robust, it has com-
monly been used thus far [4, 10, 3]. However, there is one
severe drawback exist for the technique, that is, it requires
multiple images with different patterns projected onto the
object, and thus, it is not suitable for high-speed captur-
ing. Recently, several methods for high-speed capturing
were proposed by using a DLP projector and a high-speed
camera [21, 15] or reducing the required number of patterns
using both temporal and spatial changes [9, 22]. However,
these approaches works for objects that have either limited
speeds or rigid body assumption.

Some methods use projectors only to provide textures
that change over time and 3D information is restored us-
ing a passive stereo technique [6, 24], although they are
not strictly structured light systems. Since they still require
several patterns for identification, they are not suited for ex-
tremely fast objects.

Techniques using only spatial encoding of a pattern are
suitable for fast-moving objects, since they use only a
single-frame image [11, 20]. On the other hand, the prob-
lems are that they typically need complex patterns or colors
to encode positional information. To determine the spatial
codes uniquely, the size of a code becomes large. Such pat-
terns are easily affected by textures, shape discontinuities,
image compression caused by tilted surfaces. Therefore,
density of patterns should be inevitable low, and thus, 3D
reconstructions tend to be sparse and unstable.

Recently, the solution for the complex pattern by using a
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Figure 1.(a) A system with one camera and one projector, (b) A
system with one camera and two projectors.

simple grid pattern which embeds information in relation of
connection of parallel lines has been published [12, 16, 19].
However, projected lines should be detected as separated
curves on the captured image, and thus, interval of grid pat-
tern tends to be large and density is inevitably low,e.g. sev-
eral times of pixel width. Our technique provides a simple
solution by interpolating lines with Gabor filter.

In the paper, we also propose the technique to eliminate
the remaining ambiguity of estimated phase; one may notice
that the process is as same as the phase unwrapping process
in phase-shifting methods [8, 21]. In reality, the technique is
also a solution for phase unwrapping process using geomet-
ric information (epipolar constraint in this case) instead of
using several different phases in previous ones. One impor-
tant difference from previous phase unwrapping technique
and ours is that we only require two phase images, and thus,
by assigning two colors for each phase image, we can real-
ize phase unwrapping process with a single image.

3. Overview

The system of the proposed method consists of one cam-
era and single/multiple projectors as shown in Fig.1. Since
the camera and projectors are assumed to be calibrated, the
intrinsic and extrinsic parameters of the devices are known.
Because the proposed method uses a fixed pattern emitted
from the projectors, no synchronization is required between
the camera and the projectors.

In the case of a system that uses a single projector (Fig.
1(a)), the projector casts two sets of parallel lines that are
along the vertical and horizontal axis of the projector image,
respectively. In the case that a system has two projectors
(Fig. 1(b)), each projector cast a set of parallel lines. For
both cases, the projected lines form a grid pattern on the sur-
face of a target object. The proposed method reconstructs
the shape from the grid pattern captured by the camera.

Although the 3D reconstruction from a grid pattern pro-
posed in [7] basically works without any information added
to the line pattern, a spatial encoding is useful to improve
the robustness of 3D reconstruction. A periodic color code
based on the de Bruijn sequence [11, 17, 23] was intro-
duced to the grid-based reconstruction in [16]. In this paper,
instead of using the color-code ID assigned to each line in



the pattern directly, we propose a method to find the dense
phase assigned to each pixel of the camera image. Based
on this phase information, we formulate the problem of 3D
reconstruction as estimating a variable assigned to each re-
gion of the phase by solving a linear equation.

4. Detecting continuous regions by color-coded
line patterns

In this section, we explain the proposed method to detect
continuous regions in a camera image by decoding color-
coded line patterns projected onto an object. The procedure
consists of the following steps:

1. Find the curves in a camera image, which are the pro-
jection of parallel lines in a projector image.

2. Decode the periodic pattern that is encoded by using
colors.

3. Compute the phase of periodic pattern for each pixel
by interpolating the code.

4. Detect regions in which the phase is continuous.
5. Unwrap the phase in each region.

Fig. 2 shows an example of the result at each step of
the image processing. (a) is the input image with projecting
two line sets. (b) is the result of curve detection for the one
of the line sets. The ID of each curve in a periodic color
pattern is represented by the line color in (c). By interpolat-
ing the IDs, the phase at each pixel is computed as shown in
(d). The continuous regions detected by using the phase are
represented by the color in (e). The phase in each region is
unwrapped as shown in (f).

4.1. Finding curves for parallel lines emitted from
a projector

The pattern emitted from one or multiple projectors con-
sists of multiple sets of parallel lines. First, we detect a set
of curves in a camera image as the projection of parallel
lines by discriminating them from the other sets of curves.
We use the direction and color of curves for discrimination.

The curve detection is based on the method proposed in
[16]. It classifies pixels to three labels based on the deriva-
tive along an axis of the image: positive, negative, and
nearly zero. The position of a curve is the peak of intensity
and detected as the boundary of the labels between positive
and negative. While the position is computed in subpixel
accuracy in [16] by using the cost of belief propagation, the
subpixel position is computed by the interpolation of curves
described in the following sections in this paper. Therefore,
we simplify the method to use two labels, positive (P) and
negative (N), and determine the labels by the energy mini-
mization of the following cost function by graph cuts.

Now, we assume to detect nearly vertical curves in a
camera image without loss of generality. We rotate the im-
age to detect curves of other directions. Additionally, the

color of lines are encoded by using two of RGB colors, for
example blue and cyan, in this paper. In this case, all lines
have blue component and curves are detected by using blue
plane of the camera image. The cost function is defined as∑

p∈V

g(lp) + λ
∑

(lp,lp′ )∈E

h(lp, lp′), (1)

whereV is the set of pixels andE is the set of 4-neighbor
pixel pairs. lp is the label assigned to the pixelp. λ is a
parameter defined by user. The data costg(p) is defined as
follows:

g(lp) =

{
−D(p) if lp is P
D(p) if lp is N

(2)

whereD(p) is the derivative of the intensity along the hori-
zontal axis. The discontinuity costh(lp, lp′) depends on the

direction of
−→
pp′. In the case that it is along the vertical axis,

h(lp, lp′) = 0 if the labels are the same, andh(lp, lp′) = 1
otherwise. In the case that it is along the horizontal axis,

h(lp, lp′) = (3) −sgn(D(p)) + sgn(D(p′)) if lp is P andlp′ is N
sgn(D(p))− sgn(D(p′)) if lp is N andlp′ is P
0 otherwise.

Finally, the curves in an input image are detected at the
boundary between the labelsP andN .

4.2. Decoding periodic color pattern

The lines are encoded by a periodic code based on the de
Bruijn sequence, which is defined by the number of colorsq
and the length of the coden. Namely, once the colors of the
adjacentn curves are determined, the curves are identified
in the periodic code of lengthqn. In this paper,q = 2 and
n = 3.

Decoding of the periodic code, based on a method pro-
posed in [16], is done with a graph created by vertical and
horizontal curves and their intersection points. The labels
of curves are determined by energy minimization by using
belief propagation. On the other hand, we create a graph
by vertical curves and lines along the horizontal axis of the
image. Thus, the color codes of different sets of curves are
decoded separately without computing intersection points.
Even if the number of curve sets is more than two, the de-
coding can be done without change.

4.3. Compute the phase of periodic pattern

Since the number of lines in a cycle isqn = 8 since
q = 2 andn = 3, the IDs of curves are assigned from 0
to 7. They are integer values and assigned for the pixels
on the curves. The values for the pixels that are not on the
curves can be computed by interpolating the curves, and it
is considered as the phase of the periodic function.



(a) (b) (c) (d) (e) (f)
Figure 2.An example of the result at each step of the image processing: (a) an input image, (b) the detected curves for a set of parallel
lines, (c) the decoding result of the periodic pattern, (d) the computed phase by interpolating the code, (e) the detected continuous regions,
and (f) the unwrapped phase in each region.

X axis

B
lu

e
 in

te
n

si
ty

Figure 3.The intensity profile of blue component is assumed as a
sine function along the dotted red line.

Fig. 3 shows an example of the intensity profile of blue
component along the dotted red line. The peaks of curves
are sparse in the image and the intensity profile is nearly
periodic function. We assume a locally planar surface for
the surface model, and thus, we can use a complex Gabor
filter to interpolate phase between the curves with sub-pixel
accuracy. Since Gabor filter is used for detecting a specific
band of frequency in a local region, the wavelength is re-
quired. In the paper, the interval of curvesL is used for
wavelength. The results is a complex valuez and the phase
ψ is calculated byψ = arctan(ℑz/ℜz). If the IDs of two
curves arek and (k + 1) mod qn, the phase of periodic
codeϕ at the pixel becomesϕ = k + ψ/2π. Since this is
also done for the pixels on the line, the position of a curve
is calculated in subpixel accuracy.

4.4. Detecting continuous regions and unwrapping
the phase

After the computation of the phase of each pixel, the pro-
posed method segments the image into regions that have
continuous phase. It determines if two 4-connected pixels
are in the same region by solving

min(|d|, |d+ qn|, |d− qn|) < τ, (4)

whered = ϕ1−ϕ2, ϕ1 andϕ2 are the phases of the consid-
ered pixels andτ is a user defined threshold. The algorithm
for segmentation is based on the two-pass algorithm of con-
nected component labeling. In the first pass, the neighbor-
ing pixels are labeled as the same region if they satisfies
Eq. (4), and the equivalence between neighboring labels

are stored. The neighboring labels are relabeled based on
the equivalence information in the second pass. If the area
of a region is smaller than a threshold, the method removes
it as a noisy region after segmentation.

After finding continuous regions, the phase is unwrapped
in each region. Consequently, each pixel in the region has
the corresponding coordinate of the projector with a com-
mon unknown shift. Once the unknown shift is estimated
by the method described in the next section, the correspon-
dence between a camera pixel and a projector line is deter-
mined. Then, the 3D points are calculated by triangulation.
In the latter part of this paper, we call the unwrapped phase
a relative projector coordinate.

Finally, the relative projector coordinate is multiplied by
the interval between lines in the projector image. Then, the
scale of coordinate is adjusted to the coordinate of projector
image.

5. Formulating grid-based 3D reconstruction
with continuous regions

The next step of grid-based 3D reconstruction is estimat-
ing the correspondence between curves in the camera image
and lines in the projector image. The previous method, pre-
sented in [7], estimates parameter of each curve, the num-
ber of parameters is equal to the number of curves. While
in this paper, continuous regions based on grid line pattern
are detected by the method described above. The number
of unknown parameters is only one for each region. In this
section, we explain the formulation of estimating parame-
ters with continuous regions.

5.1. Formulation for 3D reconstruction with one
projector

First, we explain the case with one projector. In this
case, two sets of lines are parallel to vertical and horizontal
axes of the projector image, respectively. If the regions of
both patterns are detected at a pixel of the camera image,
the pixel (xc, yc) has the correspondence with a relative
projector coordinate(u, v), whereu andv are the coordi-
nates calculated from vertical and horizontal curves. Fig.4
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Figure 4.The pixel(xc, yc) has the correspondence with a relative
projector coordinate(u, v). The pixel corresponds to a pixel(u+
s, v + t) in the projector image based on the epipolar geometry
with the unknown shift(s, t).

shows this situation. This correspondence gives the follow-
ing epipolar constraint:

[u+ s, v + t, 1]F

 xc
yc
1

 = 0, (5)

whereF is the fundamental matrix between the camera and
projector, ands andt are unknown shift for the regions of
vertical and horizontal curves, respectively. Since the un-
known variables in this equation are onlys andt, Eq. (5)
is a linear equation. This equation is obtained for all pixels
that haveu andv. The parameters are shared by the pixels
in the same region. If the number of regions of vertical and
horizontal curves areNs andNt, the following simultane-
ous linear equation is obtained:

Ax = b, x = [s1, . . . , sNs , t1, . . . , tNt ]
T , (6)

whereA is the coefficient matrix andb is the vector of con-
stant terms. The number of variables areNs + Nt, which
is much smaller than the number of curves in the camera
image.

If A is full rank, a unique solution is obtained. Since
each row ofA means the epipolar line at(u + s, v + t),
A is full rank if they are not parallel. In the previous for-
mulation in [7], the solution by linear equation has 1-DOF
ambiguity. Therefore, they solve the ambiguity by matching
projected pattern and detected curves, in which the knowl-
edge of line interval was used. Since the lines used in the
proposed method have constant interval and the knowledge
is used in detecting continuous regions, the unique solution
is given only by linear equation in our formulation.

5.2. Formulation for 3D reconstruction with multi­
ple projectors

Second setup of grid-based 3D reconstruction is project-
ing parallel line sets from different projectors [13]. We for-
mulate a setup with two projectors based on epipolar geom-
etry. If the points of projector 1 and 2 corresponding to a
camera point(xc, yc) are(u+ s, s′) and(v + t, t′), respec-
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Figure 5.The relationship between three corresponding points are
given by the epipolar geometry.s′ andt′ are expressed by linear
polynomials ofs andt.

tively, the epipolar constraints are expressed as follows:

[u+ s, s′, 1]F1[xc, yc, 1]
T = 0 (7)

[v + t, t′, 1]F2[xc, yc, 1]
T = 0 (8)

[u+ s, s′, 1]F12[v + t, t′, 1]T = 0 (9)

In this formulation, each projector emits a set of lines par-
allel to the vertical axis of the projector image. If the di-
rection of lines is different, the representation of projector
points can be modified without loss of generality. This sit-
uation is illustrated in Fig.5. The corresponding points are
defined by the three pairs of epipolar lines. By usingu and
v given by the region detection,s′ andt′ are expressed by
linear polynomials ofs andt from Eq. (7) and (8), respec-
tively. Therefore, Eq. (9) consists of the terms ofst, s, t and
constant.

To make Eq. (9) linear, we introduce a new variabler =
st to replace the second-order term. Eq. (9) can be regarded
as a linear equation ofr, s andt. Similar to Eq. (6), r, s and
t can be solved by gathering the constraints of all points.

In the method presented in [13], although it is proposed
that the constant interval of lines is used as an additional
constraint, this constraint is already incorporated in the re-
gion detection. While the previous method have restriction
on the configuration of camera and projectors to apply the
constraint, the proposed method solves by linear equation
regardless of configuration between camera and projectors.

The proposed formulation can be extended to the case of
three or more projectors. Ifm projectors are used, a pair of
patterns are chosen out of them and the constraint equations
are created by using the regions of the pair. The simulta-
neous equation is obtained by usingmC2 combinations of
patterns.

Since the nonlinear constraintr = st is omitted from
the system in the above linear solution, the obtained solu-
tion may not satisfy it in some cases. Especially, it happens
when the regions of three or more patterns are overlapped.
Therefore, we use the linear solution as an initial guess and
improve it by nonlinear minimization of Eq. (9).



(a) (b)
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Figure 6.The results of segmentation and relative projector coor-
dinate for the other line sets are shown in (a) and (b), respectively.
(c) is the result of 3D reconstruction. The error of the computed
projector coordinate is shown in (d).

5.3. Solution by Integer Least Square

If the projector coordinate(u + s, v + t) is estimated, it
should match with the phase of periodic code determined in
the region detection. The solution, however, can be different
due to the error of calibration and image processing. To
constrain the solution so that it matches with the detected
phase, we transform the variables as follows:

s = Lqns̃, t = Lqnt̃, (10)

whereL is the interval of lines in the projector image, which
is 5 or 10 in this paper. Now, the constraint becomes that
the new variables̃s andt̃ should be integer.

The problem becomes an integer least square (ILS) prob-
lem, which the linear equation is solved under the constraint
that the solution must be integer. It is known that this prob-
lem occurs in the case of GPS measurement [18]. In this
paper, we implemented an ILS solver based on one of the
solver, MILES [5], to obtains̃ andt̃.

6. Experiments

In the experiments, we first test the proposed method by
simulating the system. The camera image is generated by
using a virtual object and illumination simulated by a ray
tracing tool. We used as model, the bunny, from Stanford
University [1].

The input image with one projector is shown in Fig.2(a).

(a) (b)
Figure 7.The object is illuminated by (a) two and (b) three projec-
tors, respectively.
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Figure 8.(Left) The errors of corresponding points are compared
with respect to the number of projectors by adding the calibration
error to the focal length of the camera. (Right) If the error of focal
length is 5%, the phase cycles of some parts are wrongly estimated
in the case of one/two projectors.

Two sets of parallel lines, which are along the axes, are pro-
jected on to the object. The result of region detection for the
one of the sets is shown in Fig.2(e) and (f). The result for
the other set is Fig.6(a) and (b). The numbers of regions
for the sets are four and five, respectively. The number of
variables in Eq. (6) is nine in this case, which is a quite
small number for a problem of finding correspondences to
reconstruct a non-parametric 3D shape. The reconstructed
shape is shown in Fig.6(c). To estimate the accuracy of
the proposed method, we compare the projector coordinate
for each pixel computed by the proposed method with the
ground truth. Fig.6(d) shows the difference between the
computed coordinate and the ground truth. The bright pix-
els indicate large errors. The pixels at the occluding bound-
ary have large errors. While the root-mean-square (RMS)
error of the projector coordinate is 1.02 pixels if all pixels
are used, it becomes 0.175 pixels if the boundary pixels are
omitted from the computation. This result shows that the
proposed method can find the correspondence in subpixel
accuracy by interpolating the phase if the surface looks to-
ward the camera and projector enough to calculate the color
code.

Second, we test the 3D reconstruction with multiple pro-
jectors. Fig.7(a) and (b) show the input images with two
and three projectors, respectively. One of the projectors is



the one used in the single projector case. If the color code
is detected correctly, the error in finding correspondences
is mainly caused by the error of calibration. In this exper-
iment, we compare the robustness of correspondences by
modifying the focal length of the camera parameter from
the ground truth as the calibration error.

Fig. 8 shows the RMS errors of correspondences by
comparing the cases with one, two, and three projectors.
The field of view of the camera is about 56 degrees, and we
changed the focal length by 1, 2, 3, and 5% of the ground
truth. The result shows that the system with three projec-
tors is the most robust since the phases for the most of the
regions are correctly estimated. The reason is that redun-
dant informations to solve Eq. (7),(8), and (9) are given in
this case. In the case of two projectors, the phase cycles of
some parts are different from the ground truth as shown in
Fig. 8(right) if the error of focal length is larger than 2%. In
the case of one projector, the error to estimate phase cycles
occurs if the error of focal length is larger than 1%.

The difference between the cases of one and two pro-
jectors is that the axes of pattern planes are places at skew
position in the case of two projectors, while they intersect
each other in the case of one projector. The axis means a
line that is shared by 3D planes formed by parallel line pat-
tern [7]. As discussed in [13], the robustness of linear so-
lution is improved if the axes are at skew position, which is
a reason why the case of two projectors gave better results.
The further analysis will be in future work.

Third, we experiment the proposed method by using real
cameras and projectors. As mentioned in the introduction,
one of the advantage of one-shot 3D scanning is suitable to
capture the shape of objects in fast motion. In this experi-
ments, we chose as target to capture the shape: water splash,
deforming cloth, and deforming face. The image sequences
were captured at 60-2000 FPS by using a high speed cam-
era. The objects are illuminated by a single projector. The
image sizes of the camera and projector are1024 × 1024
and1024× 768 pixels, respectively.

Fig. 9 shows the four frames of the input images and re-
sults from the three sequences. In the case of water splash
(a), the water was white and opaque and the pattern was re-
flected on its surface. The proposed method succeeded to
capture the shape of water splash and wave caused by the
ball. In the case of deforming cloth (b), the detailed shape,
such as wave and crease caused by hitting a ball, was cap-
tured. In the case of face (c), the cheek was hit by hand, and
we can observe the deformation from the captured shape.
The advantage of the proposed method is that it is applica-
ble even though the motion of the targets are very fast, and
additionally targets are textureless. The average computa-
tional time was 5.00, 6.15, and 3.15 seconds for each frame
by Intel Xeon 2.4GHz processor.

7. Conclusion

This paper describes a method to reconstruct dense 3D
shapes from a single image of projected grid pattern. The
proposed method detects continuous regions by calculating
dense phase information from a set of parallel lines that are
periodically encoded by colors. Since the number of vari-
ables to be estimated is only one for each region, the total
number of variables becomes very small. Finding corre-
spondence is formulated by a simultaneous linear equation
based on epipolar geometry. The solution is obtained by the
integer least square of the equation. The formulations are
given for the cases of both single and multiple projectors.
In the experiments, we evaluated the accuracy of correspon-
dences and the comparison with respect to the number of
projectors by simulation. The 3D reconstruction of moving
objects are shown in the real experiments. In future work,
we plan to improve the computational time toward real-time
reconstruction.
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