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Abstract— Recently it is relatively easy to produce digital
point sampled 3D geometric models. In sight of the increasing
capability of 3D scanning systems to produce models with millions
of points, compression efficiency is of paramount importance.
In this paper, we propose a novel competition-based predictive
method for single-rate compression of 3D models represented
as point cloud. In particular we aim at 3D scanning methods
based on grid pattern. The proposed method takes advantage
of the pattern characteristic made of vertical and horizontal
lines, by assuming that the object surface is sampled in curve
of points. We then designed and implemented a predictive coder
driven by this curve-based point representation. Novel prediction
techniques are specifically designed for a curve-based cloud
of points, and been competing between them to achieve high
quality 3D reconstruction. Experimental results demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

During the last years, the wide-spreading of scanning tech-

nologies and applications has finally opened the way to the

long-waited 3D acquisition revolution. As a consequence,

effective 3D geometry compression schemes are required to

face the need to store and/or transmit the huge amount of

data.

3D geometry representation usually falls in two categories:

polygon mesh and point-sampled geometry. Typically, mesh-

based representation exploits the connectivity between ver-

tices, and orders them in a manner that contains the topology

of the mesh. Such representation is then made of polygons

coded as a sequence of numbers (vertex coordinates), and tuple

of vertex pointers (the edges joining the vertices), mostly due

to its native support in modern graphics cards. Such model

requires, however, a time consuming and difficult processing

with explicit connectivity constraint. Point-sampled geometry

has received attention as an attractive alternative to polygon

meshes geometry with several advantages. For example, no

connectivity information are needed anymore to be stored,

the triangulation overhead is saved, leading to a simpler

and intuitive way to process and render object of complex

topology.

Currently active 3D scanners are widely used for acquiring

3D models [1]. Especially, scanning systems based on struc-

tured light have been intensively studied recently. Structured-

light-based scanning is done by sampling the surface of an

Fig. 1. (left) Grid-pattern-based scanning system: a grid pattern is projected
from the projector and captured by the camera. (right) Example of projected
grid pattern.

object with a known pattern (e.g. grid, horizontal bars) (see

Fig. 1). Studying the deformation of the pattern allows to build

a 3D model by means of a set of points, also denoted as point

cloud. It is important to note that the spatial point organization

is strongly correlated to the pattern shape.

In this paper, we present a general framework compressing

efficiently cloud of points acquired by 3D scanning systems

using structured light. In particular, we study 3D measurement

systems using a grid pattern formed by straight lines distin-

guishable only as vertical and horizontal lines [2] as illustrated

in Fig. 1. When the projected grid pattern is extracted from

the captured image, 3D points are naturally fitted into series

of curves [3], [4]. Our method compresses point positions

by taking advantage of the spatially sequential order of the

sampled-points organized along these predefined curves.

One main objective of geometry compression is indeed

reducing the amount of data to store and/or transmit, but

also supporting application-oriented functionalities such as:

splicing, random access, error resiliency and error recovery

to name but a few. In this work, by proposing a curve-driven

point cloud compression, our framework can straightforwardly

support for example random access, error recovery, error

propagation limitation, where previous work mainly focus

on compression efficiency only. These points will be further

discussed in Section III.

The rest of the paper is organized as follows. We introduce

some related work in Section II. Section III addresses the

problem of efficiently compressing a point cloud acquired by a

grid-pattern-based 3D scanning system. Finally, experiemntal



results are presented in Section IV, and our final conclusions

are drawn in Section V.

II. RELATED WORK

The problem of 3D geometry compression has been exten-

sively studied for more than a decade and many compres-

sion schemes were designed. Existing 3D geometry coders

mainly follow two general lines of research: single-rate and

progressive compression. In opposition to single-rate coders,

progressive ones allow the transmission and reconstruction of

the geometry in multiple level of details (LODs), which is

suitable for streaming applications.

Since many important concepts have been introduced in the

context of mesh compression, several compression schemes

apply beforehand triangulation and mesh generation, and use

algorithms developed for mesh compression [5], wherein mesh

connectivity is also encoded. Instead of directly generating

meshes from the point cloud, other approaches propose parti-

tioning the point cloud in smooth manifold surfaces closed to

the original surface, which are approximated by the method

of moving least squares (MLS) [6]. On the other hand, an

augmentation of the point cloud by a data structure has been

proposed to facilitate the prediction and entropy coding. The

object space is then partitioned based on the chosen data

structure: octree [7], [8], [9], [10], spanning tree [11], [12]

to name a few. Although not strictly a compression algorithm,

the QSplat rendering system offers a compact representation

of the hierarchy structure [13]. A high quality rendering is

obtained despite a strong quantization.

To the best of our knowledge, previous point-based coders

mainly require at least one of the followings:

• approximation: MLS, etc.,

• overhead pre-processing: point re-ordering, triangulation,

mesh generation, etc.,

• data structure: spanning tree, octree, etc.,

which leads to either smoothing out sharp features, an increase

of the complexity, or an extra-transmission of a data structure.

In the next section, we discuss our proposed general frame-

work that does not need any of the aforementioned processes.

III. CURVE-DRIVEN POINT CLOUD CODING

The proposed framework compresses the points as ordered

prior to the way the projected grid pattern, consist of vertical

and horizontal lines, has been extracted. The object points

are then fitted in curves as shown in Fig. 2. This naturally

motivates our choice to take advantage of this curve-like point

organization. Unlike previous work in geometry compression,

we do not need any overhead pre-processing, connectivity

information, or data augmentation by a data structure (e.g.

octree), to reach a satisfactory compression efficiency.

A. Curve-based point cloud definition

Let us consider the point cloud S = {p1, p2, · · · pN} as

a collection of N 3D points pk1≤k≤N
. As mentioned earlier,

grid-pattern-based 3D scanning systems output the sampled

(a) captured image (b) sampled surface

Fig. 2. (a) A grid pattern is projected onto a dummy, (b) the surface object
is then sampled in series of curves.

points embedded in curves. The point cloud S can then be

represented as a set of M curves Cl1≤l≤M as

S = {C1, C2, · · · , CM} (1)

where a l-ieme curve Cl is expressed as

Cl = {pr, pr+1, · · · , ps} with 1 ≤ r < s < N (2)

The partitioning of the point cloud in set of curves is directly

obtained from the line detection algorithm in the acquisition

process [4].

B. Prediction

Let C be the current curve to encode. Intra-curve prediction

attempts to determine, for each point pk in C, the best predicted

point p̂k with respect to the previous coded points p̃i,i<k in

C. Note that previous coded points p̃i,i<k have been quantized

and inverse quantized. For notation concision, let us define the

sub-curve containing the previous coded points by

C|i<k = C ∩ {pi|i < k}, (3)

and the intra-curve prediction by

p̂k = P (C|i<k) . (4)

It is important to note that another curve informations are not

utilized, which for instance enables random access and error

propagation limitation. The prediction outputs the corrective

vector rk = pk − p̂k, also denoted as residual, and transmits

it to the entropy coder. The coding efficiency comes with

the accuracy of the prediction that is improved by choosing

the most suitable prediction method for each point. For each

point, instead of using only one prediction method for all the

points [11], we propose making compete all defined prediction

modes that are known by the encoder and the decoder. The

prediction that minimizes the Euclidean distance ‖pk − p̂k‖ is

defined as the best one. A prediction flag is then placed in the

bitstream. In the following, we present the different designed

prediction modes.



1) No prediction P Intra: No prediction is applied, which

define the current point as key point that can be used, for

example, for random access and error propagation limitation.

P Intra (C|i<k) = (0, 0, 0). (5)

2) Const PConst: The previous coded point in the curve is

used as prediction.

PConst (C|i<k) = p̃k−1. (6)

3) Linear PLinear: The prediction is based on the two

previous coded point in the curve.

PLinear (C|i<k) = 2 · p̃k−1 − p̃k−2 (7)

4) Fit a line PFitLine: The predicted point is an extension

of a segment L (C|i<k) defined by all the previous coded

points. The segment L (C|i<k) is given by line fitting algorithm

based on the M-estimator technique, that iteratively fits the

segment using weighted least-squares algorithm.

PFitLine (C|i<k) = 2· < L (C|i<k)⊥p̃k−1 >

− < L (C|i<k)⊥p̃k−2 >
(8)

where < L⊥pi > is the orthogonal projection of the point pi
onto the line supporting the segment L.

5) Fit a sub-line PFitSubLine: As previously, a line fitting

algorithm is used to perform the prediction, but a sub-curve

C|i0≤i<k is utilized instead of all the previous coded points.

The starting point pi0 is, however, needed to be signaled to

the decoder, and thus an additional flag is put in the bitstream.

PFitSubLine (C|i<k) = 2· < L (C|i0≤i<k)⊥p̃k−1 >

− < L (C|i0≤i<k)⊥p̃k−2 >
(9)

C. Quantization

After prediction, the point cloud is represented by a set of

corrective vectors, wherein each coordinate is a real floating

number. The quantization will enable the mapping of these

continuous set of values to a relatively small discrete and finite

set. In that sense, we apply a scalar quantization as follow

r̃k = sign(rk) · round
(
|rk| ∗ 2

bp−1
)

(10)

where bp is the desired bit precision to represent the absolute

floating value of the residual.

D. Coding

The last stage of the encoding process removes the statis-

tical redundancy in the quantized absolute component of the

residual |r̃k| by entropy Huffman coding.

The bitstream consists of:

• an header containing the canonical Huffman codeword

lengths,

• the quantization parameter bp,

• the total number of points,

• the residual data for every point.

The coded residual of every point is composed of:

• 3 bits signaling the prediction used,

• 1 bit for the sign,

• a variable-length code for each absolute component value

of the corrective vector with regards to the entropy coder.

(a) model Man (b) Model Kick (c) Model Squirt

Fig. 3. Test models.

TABLE I

COMPRESSION RATES IN BITS PER POINT (BPP) AFTER 12 BITS

QUANTIZATION PER COORDINATE.

model nb points nb curves rate bit savings PSNR

Man 19k 1325 15.75 bpp -83.58 % 74.77 dB

Kick 18k 1634 15.71 bpp -83.63 % 77.07 dB

Squirt 26k 2497 14.91 bpp -89.83 % 75.75 dB

E. Decoding

The decoding process is straightforward by reading the

prediction mode and the residual.

IV. EXPERIMENTAL RESULTS

The performance of the proposed framework is evaluated

using the three models shown in Fig. 3. The objective com-

pression performance of the proposed method is investigated

in the rate-distortion (RD) curves plotted in Fig.4 through the

average number of bits per points (bpp), in relation to the

loss of quality, measured by the peak signal to noise ratio

(PSNR). The PSNR is evaluated using the Euclidean distance

between points. The peak signal is given by the length of the

diagonal of the bounding box of the original model. The RD

results correspond respectively to the seven bp quantization

parameters: 8, 9, 10, 11, 12, 14 and 16.

In particular Table I shows the resulting compression rates

in bits per point (bpp) after a 12 bits quantization as defined

in Section III-C. Around -80% of bit savings is achieved

compared to the uncompressed rate that used 96 bits for each

point.

We also provide the distribution of prediction modes over

each 3D models. It is observed that the FitSubLine prediction

mode is mostly selected. Nonetheless, the adopted compet-

itive strategy between all prediction modes ensure a higher

quality 3D reconstruction. In the proposed method, 3 bits are

consumed to design the prediction FitSubLine parameter p0,

which can be: pk−5, pk−6, pk−7, pk−8, pk−10, pk−12, pk−16

and pk−20 wrt the current point pk to encode.

V. CONCLUSION

We designed and implemented a competition-based predic-

tive single-rate compression for the positions points outputted
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Fig. 4. Rate-distortion performance of the proposed encoder.

TABLE II

SELECTION PERCENTAGE OF EACH PREDICTION MODE.

model Intra Const Linear FitLine FitSubLine

Man 1.80 % 5.12 % 30.94 % 5.11 % 57.03 %

Kick 1.52 % 4.12 % 29.23 % 4.03 % 61.10 %

Squirt 1.79 % 4.57 % 30.89 % 5.11 % 57.63 %

by a grid-pattern-based 3D scanning system. The compression

is achieved by exploiting the inherent spatially organization of

the points fitted in curves. While our method has the advantage

to not require any overhead pre-processing, surface approxi-

mation, or the transmission of a data structure information (e.g.

octree, spanning tree), the curve-driven compression allows to

support random access and error propagation limitation.

Several issues remain that warrant further research. In

future studies, we intend to design a rate-distortion framework,

integrate other point attributes (e.g. color, normal, etc.). And

finally extend this work to arbitrary 3D scanning systems.
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