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Abstract Three-dimensional acquisition is emerging scanning systems raising the problem of efficient encoding

of 3D point cloud, in addition to a suitable representation. This paper investigates cloud point compression via a

curve-based representation of the point cloud. We aim particularly at active scanning system capable of acquire

dense 3D shapes, wherein light patterns (e.g. bars, lines, grid) are projected. The object surface is then naturally

sampled in scan lines, due to the projected structured light. This motivates our choice to first design a curve-based

representation, and then to exploit the spatial correlation of the sampled points along the curves through a com-

petition-based predictive encoder that includes different prediction modes. Experimental results demonstrate the

effectiveness of the proposed method.
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1. Introduction

Recently active scanning systems are capable to pro-

duce 3D geometric models with millions of pixels. The

increase of 3D model complexity rise then the need to

store, transmit, process and render efficiently the huge

amount of data. In addition to the representation prob-

lem, efficient compression of 3D geometry data becomes

particularly more and more important.

Traditional 3D geometry representation usually falls

in two categories: polygon mesh and point-sampled ge-

ometry. Typically, mesh-based representation exploits

the connectivity between vertices, and orders them in a

manner that contains the topology of the mesh. Such

representation is then made of polygons coded as a se-

quence of numbers (vertex coordinates), and tuple of

vertex pointers (the edges joining the vertices), mostly

due to its native support in modern graphics cards.

Such model requires, however, a time consuming and

difficult processing with explicit connectivity constraint.

Point-sampled geometry has received attention as an

attractive alternative to polygon meshes geometry with

several advantages. For example, no connectivity infor-

mation are needed anymore to be stored, the triangula-

tion overhead is saved, leading to a simpler and intuitive

way to process and render object of complex topology

through a cloud of points.

Currently active 3D scanners are widely used for

acquiring 3D models [1]. Especially, scanning system

based on structured light have been intensively stud-

ied recently [2], [3]. Structured-light-based scanning is

done by sampling the surface of an object with a known

pattern (e.g. grid, horizontal bars, lines) (see Fig. 1).

Studying the deformation of the pattern allows to build

a 3D model by means of a point cloud. It is worth to

note that structured-light-based scanning systems out-

put the points along the measuring direction, which nat-

urally orders group of points along the same direction:

scan lines. This motivates our choice to take advantage

of the spatially sequential order of the sampled-points

along these scan lines: first, we pre-process the data

by partitioning each scan lines in curve of points, and

after we exploit the curve-based representation through

competition-based predictive encoder specially designed

to take benefit from the scanning directions. Our en-

coder can then reach an efficient compression ratio of

the point cloud thanks to the curve-based representa-

tion (see Figure 2).

In this work, by proposing a curve-driven point cloud

compression, our framework can straightforwardly sup-

port for example random access, error recovery, error

propagation limitation, where previous work mainly fo-

cus on compression efficiency only. These points will be

further discussed in Section4..

The rest of the paper is organized as follows. We in-

troduce some related work in Section 2.. Section 3. de-
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Fig. 1 (left) Grid-pattern-based scanning system: a grid

pattern is projected from the projector and captured

by the camera. (right) Example of projected grid

pattern.

scribes the point cloud pre-processing towards a curve-

based representation, and Section 4. addresses the

problem of efficiently compressing a point cloud ac-

quired by a structured-light 3D scanning system. Fi-

nally, our final conclusions are drawn in Section 6..

2. Related work

The problem of 3D geometry compression has been

extensively studied for more than a decade and many

compression schemes were designed. Existing 3D geom-

etry coders mainly follow two general lines of research:

single-rate and progressive compression. In opposition

to single-rate coders, progressive ones allow the trans-

mission and reconstruction of the geometry in multiple

level of details (LODs), which is suitable for streaming

applications.

Since many important concepts have been introduced

in the context of mesh compression, several point cloud

compression schemes apply beforehand triangulation

and mesh generation, and then use algorithms origi-

nally developed for mesh compression [4], but at the

cost of also encode mesh connectivity. Instead of gen-

erating meshes from the point cloud, other approaches

propose partitioning the point cloud in smooth mani-

fold surfaces closed to the original surface, which are

approximated by the method of moving least squares

(MLS) [5]. On the other hand, an augmentation of the

point cloud by a data structure has been proposed to

facilitate the prediction and entropy coding. The object

space is then partitioned based on the data structure,

e.g. octree [6]～ [9], spanning tree [10], [11]. Although

not strictly a compression algorithm, the QSplat ren-

dering system offers a compact representation of the

hierarchy structure [12]. A high quality rendering is ob-

tained despite a strong quantization. A compression

algorithm for the QSplat representation has been pro-

posed through an optimal bitrate allocation [13]. Still

in a RD sense, an RD-optimized version of the D3DMC

encoder has been developed for dynamic mesh compres-

sion [14].

To the best of our knowledge, previous point-based

coders mainly require at least one of the following is-

sues:

• surface approximation: MLS, etc.,

• complexity increasing: point re-ordering, trian-

gulation, mesh generation, etc.,

• data structure: spanning tree, octree, etc.,

which leads to either smoothing out sharp features, an

increase of the complexity, or an extra-transmission of

a data structure.

3. Curve-based representation

As discussed before, the points are ordered along

scan lines forming naturally lines as illustrated in Fig-

ure 2. Under the scan line representation assumption,

the curve set generation process partitions the point

cloud, wherein each partition is a curve. In some cases,

the partitions can be directly obtained from the acqui-

sition process, e.g. line detection algorithm [3].

3. 1 Curve-based point cloud definition

Let us consider the point cloud S = {p1, p2, · · · pN}

as a collection of N 3D points pk1<
=

k<
=

N
. As mentioned

earlier, structured-light-based 3D scanning systems fit

the sampled points in curves. The point cloud S can

then be represented as a set of M curves Cl1<
=

l<
=

M as

S = {C1, C2, · · · , CM} (1)

where a l-ieme curve Cl is expressed as

Cl = {pr, pr+1, · · · , ps} with 1 <= r < s < N (2)

3. 2 Curve-based partitioning

Each curve C is defined to contain points that share

similar proprieties, e.g. curvature, direction, Euclidean

zoom

Fig. 2 The Stanford model Bunny partitioned into a set

of curves with regard to the scanning directions.

Curves are discriminate by different colors.
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distance with his neighbor, etc.. The point cloud S

is partitioned into a set of curves as defined in Equa-

tion (1). The division is controled by defining if the

current point pk to process is an outlier with respect to

the current curve C. In this study, we defined an outlier

as

‖pk − pk−1‖ > ǫ, (3)

with ǫ =
1

N − 1

N∑

i=2

‖pi − pi−1‖.

The current point pk is considered as an outlier and then

add to a new curve, if the Euclidean distance ‖pk−pk−1‖

is larger than a defined threshold ǫ: here the average

value of the distance between two consecutive points

throughout the point cloud.

For instance other outlier definitions can be consid-

ered. For example by checking if adding the current

point pk will disturb the normal distribution of the cur-

rent curve. Otherwise, by computing the inter-quartile-

range (IQR) of the current curve, and then use a mul-

tiple as a threshold. In this study we only considered

the Euclidean distance

4. Point cloud encoding

The proposed framework compresses the points as or-

dered prior to scanning direction. The object surface is

then sampled in curve of points as shown in Figure 2.

Unlike previous work in geometry compression, we do

not need any connectivity information, or data augmen-

tation by a data structure (e.g. octree), to reach a sat-

isfactory compression efficiency.

4. 1 Prediction

Let C be the current curve to encode. Intra-curve

prediction attempts to determine, for each point pk in

C, the best predicted point p̂k with respect to the previ-

ous coded points p̃i,i<k in C. Note that previous coded

points p̃i,i<k have been quantized and inverse quantized.

For notation concision, let us define the sub-curve con-

taining the previous coded points by

C|i<k = C ∩ {pi|i < k}, (4)

and the intra-curve prediction by

p̂k = P (C|i<k) . (5)

It is important to note that another curve informations

are not utilized, which for instance enables random ac-

cess and error propagation limitation. The prediction

outputs the corrective vector rk = pk− p̂k, also denoted

as residual, and transmits it to the entropy coder. The

coding efficiency comes with the accuracy of the pre-

diction that is improved by choosing the most suitable

prediction method for each point. For each point, in-

stead of using only one prediction method for all the

points [10], we propose making compete all defined pre-

diction modes that are known by the encoder and the

decoder. The prediction that minimizes the Euclidean

distance ‖pk − p̂k‖ is defined as the best one. A pre-

diction flag is then placed in the bitstream. Since the

choice of the prediction modes is related to the scene

content, a prediction flag is then placed in the bitstream

for each point. In the following, we present the different

designed prediction modes.

4. 1. 1 No-prediction P Intra

No-prediction is applied, which define the current

point as key point that can be used, for example, for

random access and error propagation limitation.

P Intra (C|i<k) = (0, 0, 0). (6)

4. 1. 2 Const PConst

The previous coded point in the curve is used as pre-

diction.

PConst (C|i<k) = p̃k−1. (7)

4. 1. 3 Linear PLinear

The prediction is based on the two previous coded

point in the curve.

PLinear (C|i<k) = 2 · p̃k−1 − p̃k−2 (8)

4. 1. 4 Fit-a-line PFitLine

The predicted point is an extension of a segment

L (C|i<k) defined by all the previous coded points. The

segment L (C|i<k) is given by line fitting algorithm

based on the M-estimator technique, that iteratively fits

the segment using weighted least-squares algorithm.

PFitLine (C|i<k) = 2· < L (C|i<k)⊥p̃k−1 >

− < L (C|i<k)⊥p̃k−2 >
(9)

where < L⊥pi > is the orthogonal projection of the

point pi onto the line supporting the segment L.

4. 1. 5 Fit-a-sub-line PFitSubLine

As previously, a line fitting algorithm is used to per-

form the prediction, but a sub-curve C|i0<=i<k is utilized

instead of all the previous coded points. The start-

ing point pi0 is, however, needed to be signaled to the

decoder, and thus an additional flag is put in the bit-

stream.
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PFitSubLine (C|i<k) = 2· < L
(
C|i0<=i<k

)
⊥p̃k−1 >

− < L
(
C|i0<=i<k

)
⊥p̃k−2 >

(10)

4. 2 Quantization

After prediction, the point cloud is represented by a

set of corrective vectors, wherein each coordinate is a

real floating number. The quantization will enable the

mapping of these continuous set of values to a relatively

small discrete and finite set. In that sense, we apply a

scalar quantization as follow

r̃k = sign(rk) · round
(
|rk| ∗ 2

bp−1
)

(11)

where bp is the desired bit precision to represent the

absolute floating value of the residual.

4. 3 Coding

The last stage of the encoding process removes the

statistical redundancy in the quantized absolute com-

ponent of the residual |r̃k| by entropy Huffman coding.

Huffman coding assigns a variable length code to each

absolute value of the quantization residual based on the

probability of occurrence.

The bitstream consists of:

• an header containing the canonical Huffman

codeword lengths,

• the quantization parameter bp,

• the total number of points,

• the residual data for every point.

The coded residual of every point is composed of:

• 3 bits signaling the prediction used,

• 1 bit for the sign,

• a variable-length code for each absolute compo-

nent value of the corrective vector with regards to the

entropy coder.

4. 4 Decoding

The decoding process is straightforward by reading

the prediction mode and the residual.

5. Experimental results

The performance of the proposed framework is evalu-

ated using the three models shown in Fig. 3. The objec-

tive compression performance of the proposed method

is investigated in the rate-distortion (RD) curves plot-

ted in Figure 4 through the average number of bits per

points (bpp), in relation to the loss of quality, measured

by the peak signal to noise ratio (PSNR). The PSNR is

evaluated using the Euclidean distance between points.

The peak signal is given by the length of the diagonal of

the bounding box of the original model. The RD results

correspond respectively to the seven bp quantization pa-

rameters: 8, 9, 10, 11, 12, 14 and 16. We compare our

competitive-optimized strategy with the simpler deci-

sion made only on the prediction error. It can be ob-

served that the proposed method provides better results

in RD performance.

In particular Table 1 shows the resulting compression

rates in bits per point (bpp) after a 12 bits quantization

as defined in Section 4. 2. Around -80% of bit savings is

achieved compared to the uncompressed rate that used

96 bits for each point.

Tbl. 1 Compression rates in bits per point (bpp) after 12

bits quantization per coordinate.

model #points #curves rate bit savings

Dragon 43k 1221 11.98 bpp -87.51 %

Buddha 79k 2535 11.52 bpp -87.99 %

Bunny 35k 924 12.17 bpp -87.31 %

6. Conclusion

We designed and implemented a competition-based

predictive single-rate compression for the positions

points outputted by a structured-light 3D scanning sys-

tem. Novel prediction methods has been designed to

exploit the inherent spatially organization of the points,

that are ordered prior to the scanning direction. First

we pre-process the point cloud to efficiently taking ad-

vantage of the scan lines in the prediction stage. In ad-

dition our method had the advantage to not need any

surface approximation, or the transmission of a data

structure information (e.g. octree, spanning tree).

Several issues remain that warrant further research.

In future studies, we integrate other point attributes

(e.g. color, normal, etc.), and extend our encoder to

arbitrary point clouds.
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