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Abstract

In this paper, we propose a method to reconstruct the
shapes of moving objects. The proposed method is a
projector-camera system that reconstructs a shape from a
single image where a static pattern is cast by a projector;
such a method is ideal for acquisition of moving objects
at a high frame rate. The issues tackled in this paper are
as follows: 1) realize one-shot 3D reconstruction with a
single-colored pattern, and 2) obtain accurate shapes by
finding correspondences in sub-pixel accuracy. To achieve
these goals, we propose the following methods: 1) implicit
encoding of projector information by a grid of wave lines,
2) grid-based stereo between projector pattern and cam-
era images to determine unique correspondences, 3) (quasi-
)pixel-wise interpolations and optimizations to reconstruct
dense shapes, and 4) a single-colored pattern which con-
tributes to simplify pattern projecting devices compared to
color-coded methods. In the experiment, we show the pro-
posed method is efficient to solve the issues above.

1. Introduction
Importance of shape capture of moving objects is rapidly

increasing. For example, gaming device that can capture

human motion in real-time and realize a device-free inter-

face achieved a million seller [11]. A vision system for ve-

hicles and mobile robots are also commonly used [4]. One

critical issue of these scanners is that they cannot measure

shapes as accurately and densely as existing range sensors

which is for static objects. If high accuracy and resolution

are realized, they should be more useful for various pur-

poses, e.g., medical application, fluid analysis and so on.

There are several methods exist for capturing moving ob-

jects, such as stereo methods or time-of-flight (TOF) meth-

ods. Especially, structured-light stereo methods are suit-

able for capturing moving objects and have been widely re-

searched [11, 7, 15, 21]. Structured-light methods are usu-

ally categorized into two types: temporal-encoding meth-

ods and spatial-encoding methods. Since a spatial-encoding

method just requires a single input for reconstruction (a.k.a.
one-shot scan), it is ideal to capture moving objects with

high FPS. Therefore, many researches have been involved

in spatial-encoding methods [17]. However, since they re-

quire certain areas to encode information on object surfaces,

the resolution tends to be low and reconstruction becomes

unstable.

One of the approaches to encode information in efficient

ways is to use a color code. By using multiple colors, mul-

tiple bits of information can be assigned to each pixel of the

camera image. A color-based coding is suitable for spatial

encoding [16, 6, 24, 15, 14]. It, however, has some limita-

tions and problems. The surface of the target objects must

sufficiently reflect each color of the pattern. And, since

the RGBs of off-the-shelf video projectors have overlapped

spectral distribution, errors in determining colors of pixels

are inevitable. To avoid those problems, several methods

are proposed for efficient spatial encoding without using

colors, such as dot patterns or grid patterns. Even though,

there still remain several problems, i.e., ambiguities on cor-

respondences and sparse reconstruction. In this paper, we

propose a one-shot scanning method which can solve the

aforementioned problems with the following methods.

Grid pattern with wave patterns: By using a wave-shaped

grid pattern, the intersection points can be used as features
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for matching. Instead of explicitly encoding the positional

information of a structured light, the proposed pattern im-

plicitly gives information which can make the order on the

candidates of corresponding points.

Grid-based stereo for projector-camera systems: The

proposed system can be understood as an extension of a

pixel-based stereo method for a camera-pair system to a

grid-based stereo for a projector-camera system. With this

method, as long as connected curves are detected on cap-

tured image, global optimization can be realized.

Pixel-based interpolation using image matching: To

solve a sparse reconstruction because of grid pattern, we

propose a (quasi-)pixel-wise interpolation and optimization

technique based on image matching to estimate depth for all

the pixels.

A single-colored static pattern: To increase the stabil-

ity on the colors of the target objects, we propose a single-

colored static pattern based method. Thanks to the single

color, wider range of projectors can be used compared to

multi-colored patterns. For example, a laser projector of

single narrow-band light can be used to reduce the interfer-

ences from the ambient lights.

2. Related work
TOF systems and triangulation based methods (e.g.,

light-sectioning method or stereo method) are widely

known for active measurement systems. To capture dy-

namic scenes with the active systems, methods based on

both approaches have been researched. In many TOF laser

scanning systems, a point laser is projected and the interval

timebetween the emission and the detection time is mea-

sured. Since the 3D information is obtained one point at a

time, it is unsuitable for capturing a entire scene in a short

period of time. To capture dynamic scenes, some TOF de-

vices project temporally-modulated light patterns and ac-

quire a depth image at once by capturing the reflections with

many detectors on a 2D image sensor [2, 10]. However, the

present systems are easily disturbed by other light sources

and the resolution is lower than normal cameras.

With regard to triangulation based methods, many meth-

ods of this category use point or line lasers and a scene is

scanned by sweeping the lights. This type is unsuitable

for dynamic scenes, because sweeping takes a time. Us-

ing area light sources is a simple solution to reduce time for

scan. However, unlike the point or line light sources, am-

biguity on correspondences remains. To solve it, typically

two solutions are known, i.e., temporal-encoding or spatial-

encoding method[16].

In a temporal-encoding method, multiple patterns of il-

luminations are projected, and the correspondence informa-

tion is encoded in the temporal modulations. Thus, it is

essentially unsuitable for acquiring dynamic scenes. How-

ever, some methods are proposed to resolve this problem;

Projector

Camera

Target scene

Figure 1. Scanning system: multiple wave lines are projected and

their intersections are detected and used for reconstruction.

e.g., changing the projected patterns with high frequencies

[13], reducing the required number of patterns by using

phase patterns[23], or using DMD patterns[12]. Another

approach is a space-time stereo, where multiple cameras are

used with temporally varying illumination [25]. Although it

is reported that some works can capture around 100 FPS by

combining motion estimation, since these methods require

multiple frames, the results degrade if object moves fast.

A spatial-encoding method uses a static pattern and usu-

ally requires just a single image, and thus, it is suitable

to capture dynamic scenes. However, since information

should be encoded in certain areas of the pattern, the res-

olution tends to be low. Moreover, correspondences are not

stably determined because the patterns are distorted due to

the color or the shapes of the object surface. Many methods

have been proposed to solve the problems; e.g., using multi-

ple lines with globally-unique color combinations [20, 26],

dotted lines with unique modulations of dots [9, 1], 2D

area information for encoding [22, 11], using the phase

of a fringe pattern [19, 18], or connections of grid pat-

terns [8, 7, 15, 21]. However, no method has achieved suf-

ficient performances in all aspects of precision, resolution,

and stability.

In the paper, we propose a new spatial-encoding method

using grid pattern to solve the aforementioned problems.

Although it is known that a grid pattern based technique

inevitably has ambiguity on correspondences and produces

erroneous reconstruction by wrong curve detection [7, 15,

21], both problems are efficiently solved by our technique.

3. Overview
Our system consists of a single projector and a camera

as shown in Fig.1. The projector casts a static pattern which

is shown in Fig.3(b). The pattern is configured with ver-

tical and horizontal sinusoidal curves to create grid shape

(details are described in Sec.4). Since the pattern is static

with single color, no synchronization is required, high FPS

scanning is possible.

Overview of our algorithm is shown in Fig.2. First, we

detect curves from a captured image. We use the curve de-

tection method using belief propagation method proposed

by Sagawa et al. [15]. With the method, vertical and hori-
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Capture image

Curve detection and construction

of graph from intersections

Calculation of data term for

candidates of intersection

Finding correspondences 

based on belief propagation

Interpolation depths by 

minimizing re-projection error

3D shape reconstruction

Figure 2. Algorithm overview
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2Ax
2Ay

(a) (b)
Figure 3. Parameters of wave grid are shown in (a). Sx and Sy

are the intervals between adjacent wave lines, Wx and Wy are

the wavelengths of a wave line, Ax and Ay are the amplitudes of

waves with respect to vertical and horizontal lines, respectively.

(b) is an example of wave grid.

(a) (b)
Figure 4. Wave lines of two directions are detected separately: (a)

input image, (b) detected grid. The points inside the dotted circle

are used for computation in Fig.6.

zontal lines are robustly detected from a grid pattern from a

single color. From the detected curves, intersection points

are calculated, and a graph is also constructed by using

intersection points as nodes of the graph. Then, for each

intersection point, epipolar line on the projected pattern is

calculated to find a correspondence. Since multiple candi-

dates of correspondences are usually found, one solution

can be determined by our belief propagation based tech-

nique. Finally, the depths for all the pixels are interpolated

by matching between the pattern and the captured image

and 3D shapes are densely reconstructed.

4. Implicit encoding by single-colored wave
grid

Geometrical attributes of the projectors and the cameras

are usually considered to be the same. In this work, the

pattern on the projector’s image plane is called a projector

image, and the observed image on the camera’s image plane

is called a camera image.

To obtain unique correspondences between the camera

and projector images by spatial encoding, a complicated

pattern of large window size have been required in previ-

ous methods. Moreover, while the wider baseline is desir-

able to improve accuracy, the observed pattern will be more

distorted, which makes it difficult to decode the pattern in

practical cases. Therefore, we use a simple but informative

pattern that is easy to detect and decode.

In this paper, we propose a pattern that gives informa-

tion which can make the order on the candidates of corre-

sponding points rather than get the unique correspondence

through decoding process. The proposed pattern consists

of vertical and horizontal directions of wave lines, which

forms a grid pattern. Because each wave line is simple, it

is easy to detect curves, and the position of a curve can be

calculated in sub-pixel accuracy by detecting peaks of in-

tensities of the curve.

The wave line is a sinusoidal pattern, which is periodic

and self-recurring. The grid of wave lines, however, can

give information for finding correspondences. The pro-

posed method uses the intersection points of vertical and

horizontal wave lines as feature points. The arrangement

of intersection points is determined by the intervals and the

wavelength of the wave lines. In the paper, we use the

same interval and wavelength for all the vertical and hor-

izontal wave lines. However, as described in the follow-

ing, because the interval of the vertical wave lines is not

equal to the integral multiple of the horizontal wavelength,

the intersection points appear at the different phases on the

wave pattern; it means that the local pattern around an in-

tersection point has local uniqueness, and it can be used as

a discriminative feature. In this paper, we also use ‘wave

patterns’ to refer to the wave lines.

The local pattern around a intersection point is not

globally-unique in the whole pattern and periodic. There-

fore, the same pattern occurs at every Nx and Ny wave

lines along the horizontal and vertical axes, where Nx =
lcm(Sx,Wx)/Sx, Ny = lcm(Sy,Wy)/Sy where lcm(a, b)
is the least common multiple of a and b. Hereafter, subscript

letter x means the symbol describes values about horizontal

axis, and y about vertical axis. Sx and Sy are the intervals

between adjacent wave lines, and Wx and Wy are the wave-

lengths, as shown in Fig.3(a). The patterns, however, can

be discriminative in each cycle. Fig.3(b) shows an example

with Sx = 10, Sy = 11,Wx = Wy = 14, Ax = Ay = 1
(pixels), where Ax and Ay are the amplitudes of waves. In
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Figure 5. (a) The matrix of SSD values between all pairs of in-

tersection points. Each pixel represents the SSD value of a pair.

Bright pixels indicate large differences. (b) The histogram shows

the distribution of SSD values.
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Figure 6. The SSD values are calculated for five points on the same

wave line in Fig.4(b). These points are compared to the multiple

candidates in the projector image. Each marker corresponds to the

one of five points. The black line is the averaged value of five

points. The correct ID of the wave line is 12 in this case.

this case, each cycle has 7 and 14 wave lines along hor-

izontal and vertical axes, respectively. Consequently, 98

(= 7 × 14) intersection points of different patterns exist in

the rectangle. Fig.5(a) shows the matrix of sum of squared

differences (SSD) between all pairs of intersection points,

where the window size is 10 × 10 pixels. A pixel in the

matrix represents the SSD value of a pair. Bright pixels in-

dicate large differences. Since the dark pixels exist sparsely,

the number of similar patterns is minor, which can be seen

from the histogram of the distribution of SSD values shown

in Fig.5(b). This indicates the local pattern around intersec-

tion points can be used as discriminative features.

In stereo matching, the candidates of corresponding

points are restricted to the points on the epipolar line. If

a intersection point is located within a certain distance from

the epipolar line, it is chosen as a candidate. The number of

candidates depends on the position of intersection points in

the camera image. Since the candidates are sparsely located

in the projector image, the number of candidates is much

smaller than the case of usual pixel-based stereo without re-

stricting the search range.

Fig.6 shows the SSD values of the five points on the same

wave line in Fig.4(b). These points are compared to the

candidates in the projector image. Each marker in the figure

corresponds to the one of five points. Since the points are

Object surface

Tangent plane

Camera image

Projector image

Rectangular patch

Reprojected region

ax+by+cz+1=0

p R(p)
tp

grid point
candidate

Figure 7. The rectangular patch around a grid point p is re-

projected onto the projector’s image plane. tp is one of candidates

of correspondence for p.

on the same wave line, the correct ID of wave line is the

same, which is 12 in this case. The SSD values of each

points have the minimum value at ID 12, but the difference

between the value at ID 12 and others is not apparent, since

the feature by wave lines are not so strong. The averaged

value indicated by the black line, however, clearly has the

minimum at the ID 12; the value at ID 12 is 0.102, while

the secondary minimum is 0.217. It shows the SSD values

at intersection points can be used as the feature to compare,

and the connectivity given by wave lines can be used as

powerful constraint for regularization.

5. Projector-camera stereo on grid
To find the best combinations of correspondences, a new

optimizing method using regularization with matching cost

of local patterns is introduced. The proposed method uses

the grid of wave patterns detected by curve detection shown

in Fig.4(b). An intersection point of wave grid in the cam-

era image is hereafter called a grid point. If grid points are

connected with each other by the grid, they should be on

the same wave line on the projector image, which can be

used as regularization. It is assumed that the connectivity

of grid points is given by the line detection. The connec-

tivity is however sometimes wrong, typically because of the

occluding boundaries. Therefore, we propose a method to

solve the problem to assign the corresponding point for each

grid point using the energy minimization on the grid.

5.1. Data term for energy minimization
First, we calculate the matching costs for all the candi-

dates as the data term for energy minimization. The cost

is computed by SSD between the captured image and the

projector image. Though, since the position of a grid point

has some error and the pattern observed by the camera is

distorted by the surface geometries, the simple SSD with

rectangular patch is unsuitable for the data term. Therefore,

we use the tangent plane of patch around the grid point to

calculate a better matching cost and determine the corre-

spondence with each candidate in sub-pixel accuracy.
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We assume that the surface around a grid point is locally

planar as shown in Fig.7, and the 3D plane is represented

by ax + by + cz + 1 = 0, where a, b and c are parameters

of a plane. We estimate the parameters that accounts for

the distortion by minimizing the SSD. The procedure is as

follows.

1. Project the rectangular patch around a grid point in the

camera image onto the 3D plane, and re-project it onto

the projector’s image plane.

2. Calculate the SSD between the intensities of the pro-

jector image and the re-projected patch.

3. Modify a, b and c to minimize the SSD values.

4. Iterate the above steps for several times.

The initial values of a, b and c are set so that the plane con-

tains the point computed by triangulation and parallel to the

camera’s image plane. The SSD value is calculated by the

following equation.

SSDa,b,c(p) =
∑

p′∈R(p)

(Ic(p
′)− Ip(Ha,b,c(p

′))2, (1)

where R(p) is the rectangular patch around p and Ha,b,c(p
′)

is the transformation by re-projection of p′ onto the projec-

tor image. Ic(·) and Ip(·) are the intensities of the camera

and projector images, respectively.

5.2. Finding correspondences by energy minimiza-
tion on grid

Now the grid consists of grid points p ∈ V and the con-

nections (p, q) ∈ U , where p and q are grid points, V is

the set of grid points, and U is the set of edges of the grid

graph. A grid point p has the candidates of corresponding

points tp ∈ Tp in the projector image, where Tp is the set of

candidates for the grid point p. We define the energy to find

correspondences as follows:

E(T ) =
∑
p∈V

Dp(tp) +
∑

(p,q)∈U

Wpq(tp, tq), (2)

where T = {tp|p ∈ V }. Dp(tp) is the data term of as-

signing a candidate tp to p. Wpq(tp, tq) is the regularization

term of assigning candidates tp and tq to neighboring grid

points.

The data term is the SSD calculated by the method de-

scribed in previous section. The regularization term is de-

fined as follows

Wpq(tp, tq) =

{
0 tp and tq are on the same wave line

λ otherwise,
(3)

where λ is a user-defined constant. The energy is minimized

based on belief propagation [5] in this paper.

An advantage of using energy minimization to enforce

structures is that they can be “soft constraints.” This is im-

portant because there is always a chance that erroneous grid

connections occur in actual case. With our method, while

wrong connection was determined and removed at the line

detection before 3D reconstruction in the previous meth-

ods [15], wrong connection removal and 3D reconstruction

are simultaneously accomplished to achieve dense and bet-

ter result. This is because not only local features by wave

pattern but also epipolar constraint are used for removing

wrong connection, while only color information was used

in [15].

6. Generating dense shape by interpolating
grid points

The correspondences for sparse grid points are obtained

by the grid-based stereo. The next step is to obtain dense

correspondences by using all the pixels. We first calculate

depth values of densely resampled pixels by interpolating

the grid points using estimated local planes of surround-

ing grid points for each pixel. Then, the densely resampled

depth values are optimized by minimizing the difference of

intensity for all the pixels between camera image and pro-

jector image. Although Sagawa et al. [14] also achieved

dense reconstruction, it was based on interpolation between

grid lines, whereas, in this work, independent depth estima-

tion for each pixel is achieved by (quasi-)pixel-wise opti-

mization based on photo-consistency.

6.1. Calculating depths for resampled pixels
If the viewing vector of a resampled pixel x from the

camera origin is (u, v, 1), the depth dx for the pixel is com-

puted by

dx =
−1

axu+ bxv + cx
, (4)

where ax, bx and cx are the parameters computed for the

pixel. ax for each pixel is interpolated as follows:

ax =

∑
p G(|p− x|)ap∑
p G(|p− x|) , (5)

where p is a grid point, G(·) is a Gaussian function, and |p−
x| is the distance between p and x. bx and cx are calculated

in similar manner by weighted averaging.

6.2. Optimizing depths for all resampled pixels
We resample the image pixels to generate a dense mesh

model, for example, every three pixels for both vertical and

horizontal directions. The initial position of each vertex is

given by using the depth calculated by Eq.(4). The gen-

erated mesh model consists of triangles by connecting the

adjacent resampled pixels as shown in Fig.8. To optimize

the depths iteratively, we parameterize dx by using small

movement Δdx. The depth of pixel x in Fig.8 is calculated

as follows.

dx +Δdx = [1− wx2 − wx3 , wx2 , wx3 ]

⎡
⎣ dx1 +Δdx1

dx2 +Δdx2

dx3 +Δdx3

⎤
⎦ ,

(6)
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Object surface

Camera image
Projector image

x1

x2

x3

d1+Δd1

d2+Δd2

d3+Δd3

depth

A triangle of mesh

Pd1+Δd1
(x1)

Pd3+Δd3
(x3)

Pd2+Δd2
(x2)

xwx3

d+Δd

Pd+Δd(x)
wx2

Figure 8. x1, x2 and x3 are resampled pixels. Each pixel is re-

projected onto the projector’s image plane by using the depth. The

transformation is represented by PD+ΔD(x), while each reprojec-

tion uses a subset of D +ΔD for transformation.

where wx2 and wx3 are the weights for linear interpolation.

dx + Δdx can be calculated for all pixels in the camera

image by interpolating the depths of resampled pixels.

Now, D + ΔD is a vector of dx + Δdx by collecting

depths of all the vertices. The reprojection error compared

with the projector image is calculated by using all the pixels

as follows:

E(ΔD) =
∑
x

(Ic(x)− Ip(PD+ΔD(x))2

+ γ
∑
x,x′

(Δdx −Δdx′)2, (7)

where the reprojection onto the projector image is repre-

sented by PD+ΔD(x), while each reprojection uses a subset

of D + ΔD for transformation. x and x′ are adjacent ver-

tices. γ is a user-defined parameter for regularization. We

estimate the parameter ΔD by minimizing the error, and it-

erate the reprojection and minimization alternatively until

convergence by updating the depths D. Finally, the opti-

mized position of each vertex is calculated by the updated

depths D.

7. Experiments
We used a camera of 1600× 1200 pixels and a projector

of 1024 × 768 pixels. The image sequences were captured

at 30FPS. We used a PC with Intel Core i7 2.93GHz and

NVIDIA GeForce 580GTX. The algorithms of image pro-

cessing and reconstruction are implemented with CUDA.

First, we show the effectiveness of the proposed wave

pattern by comparing with a straight-line pattern. Fig.9 is

the result of 3D reconstruction with the proposed wave pat-

tern shown in Fig.3(b). Fig.9(a) is the input image and (b)

is an obtained grid pattern after the projector-camera stereo

described in Sec.5 is applied. The grid lines near the oc-

cluding boundary, i.e., head and neck of the mannequin,

were successfully disconnected at the stereo matching pro-

cess. Fig.9(c) shows the result of 3D reconstruction with

our method. The number of the grid points was 943 and the

(a) (b) (c) (d)
Figure 9. 3D reconstruction with the proposed wave pattern: (a)

input image, (b) detected grid after stereo matching, (c) recon-

struction results of the grid, (d) reconstruction after interpolation.

(a) (b) (c)
Figure 10. 3D reconstruction of a cube-shaped object: (a) input

image, (b) the result of 3D reconstruction by the proposed method,

(c) the result by Kinect.

average number of candidates of corresponding point for

each grid point was 41. The computational time for curve

detection and the grid-based stereo were 64.4 msec, and

27.5 msec, respectively. Although the search space was full

viewing volume, thanks to the sparsity of the grid pattern,

the computational cost is still low. The proposed method

generated the dense shape as shown in Fig.9(d) by the inter-

polation method described in Sec.6. The number of vertices

of the 3D model was 24,618. The number of iteration for

optimization was five, and the computational time for in-

terpolation was 117.5 msec. The total time including curve

detection was 209.5 msec.

Therefore, the proposed method realizes on-line process-

ing with additional processing including visualization, at

about 10 frames/second with the grid-based stereo. The in-

terpolated shape can be generated at 3 frames/second with-

out any pipeline processing. Since the implementation is

not fully optimized, the frame-rate can be improved and it

is our future work.

Next, the accuracy of the proposed method was evalu-

ated by capturing a cube-shaped object as shown in Fig.10.

The size of the cube was 0.2m square and the distance from

the camera was about 1.0m. Each face of the reconstructed

cube was fit to a plane to calculate RMSE. The average of

RMSE of two planes was 0.36mm. Fig.10(c) is the result

obtained by Microsoft Kinect, of which the RMSE of fit-

ting a plane to each face is 1.78mm. The errors of the pro-
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(a) (b) (c) (d)
Figure 11. Comparison of different methods: (a) the temporal-

encoding method by projecting phase-shift pattern, (b) Kinect, (c)

the spatial-encoding method by projecting color-encoded grid pat-

tern [14], and (d) the proposed method.

posed method is smaller than Kinect, and can be considered

sufficiently small for practical usage.

Fig.11 shows another comparison of the result by differ-

ent methods: (a) the temporal-encoding method by project-

ing phase-shift pattern, (b) Kinect, (c) the spatial-encoding

method by projecting color-encoded grid pattern [14], and

(d) the proposed method. Since the temporal-encoding

method have advantage in terms of accuracy, we used it

as the ground truth for quantitative comparison. The dif-

ference between meshes are calculated by using a method

proposed by Cignoni [3]. The RMSEs from (a) are (b)

22.9mm, (c) 4.9mm, and (d) 3.9mm, respectively. The dis-

tance from cameras to the object is about 2.1m, and the

baseline between camera and projector for the cases of (c)

and (d) is 0.5m. The propose method (d) gave the best per-

formance. The error is caused by the artifact of projected

lines. Since the proposed method minimizes the difference

between camera and projector images, the optimization is

affected by optical condition including lens focus, surface

characteristics, etc. Therefore, the artifact occurs in some

conditions. To reduce this artifact is one of our future work.

The error of (c) is slightly larger than the proposed method.

The error is mainly caused by wrong calculation of phase to

interpolate lines, which results in small holes of the mesh.

The error by Kinect is larger than the other two. It is consid-

ered mainly because it has narrow baseline and wide field

of view compared to the other cases.

Finally, we show the results of capturing moving objects.

Fig.12 and Fig.13 show the results of capturing the scene of

opening a hand and punching human, respectively. Since

the proposed method is one of one-shot method, it can gen-

erate 3D shapes even if the target moves in fast motion.

8. Conclusion
In this paper, efficient dense 3D reconstruction method

from a single image (one-shot scan) using single-colored

static pattern projector is proposed. The method is unlike

previous one-shot scanning methods and utilizes implicit

encoding technique which consists of grid pattern with si-

nusoidal curves. With the pattern, irregularity of pattern is

increased and solution becomes stable. We also propose a

new approach to extend stereo technique to projector and

camera system by using connectivity of grid pattern. At the

final reconstruction step, a pixel based interpolation method

which can recover dense 3D shape is presented. In the ex-

periments, we evaluated the accuracy of our method com-

pared to state-of-the-art one-shot scan technique and proves

strength of our method. In addition, successful 3D recon-

struction of moving objects is demonstrated. In the future,

we plan to use multiple devices to reconstruct entire shape

of moving object.
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