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ABSTRACT

Recently, structured-light-based scanning systems have gain in

popularity and are capable of modeling entire dense shapes that

evolve over time with a single scan (a.k.a. one-shot scan). By

projecting a static grid pattern onto the object surface, one-shot

shape reconstruction methods can scan moving objects while still

maintaining dense reconstruction. However, the amount of 3D

data produced by these systems grows rapidly with point cloud of

millions of points. As a consequence, effective point cloud com-

pression scheme is required to face the transmission need. In this

paper we propose a new approach to compress point cloud by tak-

ing advantage of the fact that arithmetic coding can be split into

two parts: an encoder that actually produces the compressed bit-

stream, and a modeler that feeds information into the encoder. In

particular, for each position point and normal, we propose to cal-

culate the distribution of probabilities based on their spatial pre-

diction as modeler, while classical point cloud coder mainly focus

on the reduction of the prediction residual. Experimental results

demonstrate the effectiveness of the proposed method.

Index Terms — Point cloud, arithmetic coding, adaptive model,

probability, space curve

1. INTRODUCTION

An increasing number of applications require a dense and precise

shape acquisition of moving objects, giving rise to a large amount

of data to be stored, transmitted, and rendered. Dense shape ac-

quisition consists mainly of laser-based systems, wherein a laser

beam physically moves in one or two dimensions for scanning.

Nonetheless, such systems can only reconstruct a single slit per

frame, which makes impossible a full dense shape acquisition in

a single scan. Currently, 3D scanners that use structured light are

also actively researched for scanning 3D shapes [1]. Especially

within our scope of interest, one-shot structured-light-based sys-

tems that uses a static grid-pattern are capable of modeling dense

moving shape in one single scan (a.k.a. one-shot scan) [2, 3]. The

object surface is sampled by a grid pattern formed by straight lines

distinguishable only as horizontal and vertical lines (see Fig. 1).

As long as the lines are extractable, the pattern can be as dense

as needed. Although, such a pattern is normally not enough to

reconstruct the shape, new techniques have been introduced uti-

lizing either coplanarity constraints [2] or probabilistic graphical

models [3]. Grid-pattern-based systems are then capable of scan-

ning moving objects while still maintaining dense reconstruction,

Figure 1. (left) Grid-pattern-based scanning system: a grid pattern is pro-

jected from the projector and captured by the camera. (right) Example of

projected grid pattern.

which results in 3D models with millions of points.

Nonetheless, the huge amount of raw point data has to be

stored or transmitted by efficient compact means. Noise and in-

completeness, however, make the process more difficult to achieve.

A common way to compress point cloud is to: i) spatially predict

each point in a defined order and, ii) entropy code the prediction

residual by representing frequently occurring patterns with fewer

bits. One of the earliest entropy coding technique is Huffman’s

algorithm [4], which has been the subject of many studies. Huff-

man coding is, however, now superseded by the important break-

through of arithmetic coding [5] that can achieves vastly superior

compression performance. In addition, arithmetic coding clearly

encourages a clear separation between the statistical model for

representing data and the coding of information with respect to

that model. It also accommodates adaptive models easily and is

computationally efficient. Current point cloud compression meth-

ods are broadly based on the before-mentioned scheme, where

points are spatially predicted and, the residual is entropy coding.

In the followings, we denote these methods as residual-based com-

pression schemes. They broadly assume that the prediction resid-

ual follows a Laplacian distribution. The problem, however, is to

design a model that at the same time: i) covers a large variety of

data and, ii) is accurate enough to fit real probability distribution

of the current data to encode.

In this paper, we propose an alternative point compression

without residual-based coding. Specifically, we propose to explic-

itly incorporate the spatial prediction into the arithmetic coder in

the form as a statistical model. The model is a way of calculating

the distribution of probabilities for the next point. In particular,

we first made the observation that structured-light-based scanning

systems output points along the measuring direction, which nat-

urally orders groups of points along the same direction: the scan

lines. Especially, when the projected grid pattern is extracted from

the captured image, points are naturally fitted into a series of 3D



Figure 2. Sampled point cloud partitioned into series of curves wrt to the

projected grid pattern. Curves are discriminate by different colors.

space curves. Then, we represent each 3D space curve as a 3D

chain code, which is a 3D extension of Freeman chain code [6],

where each direction is represented by the curvature of the curve

in space. After, each direction along the space curve is entropy

coded with respect to his spatial prediction, resulting in an accu-

rate statistical model and, thus, better compression efficiency.

The rest of the paper is organized as follows. We introduce

some related work in Section 2. Section 3 addresses the problem

of efficiently compressing a point cloud using a spatial-prediction-

based entropy coding. Experimental results are presented in Sec-

tion 4, and finally, our final conclusions are drawn in Section 5.

2. RELATED WORK

The problem of 3D geometry compression has been extensively

studied for more than a decade and many compression schemes

were designed. Since many important concepts have been intro-

duced in the context of mesh compression, several point cloud

compression schemes apply beforehand triangulation and mesh

generation, and then use algorithms originally developed for mesh

compression , but at the cost of also encoding mesh connectiv-

ity. Instead of generating meshes from the point cloud, other ap-

proaches propose partitioning the point cloud in smooth manifold

surfaces close to the original surface, which are approximated by

the method of moving least squares (MLS) [7]. On the other hand,

an augmentation of the point cloud by a data structure has been

proposed to facilitate the prediction and entropy coding. The ob-

ject space is then partitioned based on a data structure, e.g. oc-

tree [8].. Each point is then predicted using a linear combina-

tion of the ancestor vertices wrt the data structure. Although not

strictly a compression algorithm, the QSplat rendering system of-

fers a compact representation of the hierarchy structure [9]. A

high quality rendering is obtained despite a strong quantization.

3. PROPOSED FRAMEWORK

Let us consider the point cloud defined by S =
{
(pk, nk) | k ≤

N
}

as a collection of N pairs of 3D points {pk} and normals

{nk}. As mentioned earlier, structured-light-based 3D scanning

systems output points into series of space curves. The point cloud

S can then be represented as a set of M curves Cl1≤l≤M as

S = {C1, C2, · · · , CM} (1)

Figure 3. 2D example of plane curve sampled at intervals of arc length

∆S. Each point has a turning angle α as the angle between two consecu-

tive segments.

where a l-ieme curve Cl is expressed as

Cl = {(pr, nr), (pr+1, nr+1), · · · , (ps, ns)} (2)

with 1 ≤ r < s < N . The organization of the point cloud into

series of space curve can be straightforwardly obtained from the

lien detection algorithm during the acquisition process [11].

For simplicity of notation, let C be the current curve to encode.

Each point pk and normal nk in C are spatially predicted with

respect to the previous reconstructed points p̃i with i < k.

3.1. 3D Chain Code Representation

We propose to parameterize a space curve by its length ∆S and

its turning angle α (the angle between two consecutive segments),

as illustrated in Fig. 3. Given the vector vk = pk −pk−1 between

two consecutive point. the turning angle in 3D space between two

vectors is defined by the triplet angles αvk (αx, αy, αz) as the dif-

ference of their direction angles. Given a vector vk(vkx, vky, vkz),

his direction angles θ
(
θvkx

, θvky
, θvk z

)
are expressed by

cos
(
θvkx

)
=

vkx

‖vk‖
,

cos
(
θvky

)
=

vky

‖vk‖
,

cos
(
θvk z

)
=

vkz

‖vk‖
.

(3)

Then, the space curve is represented by a starting point followed

by a list of turning angles, where after quantization each turning

angle can be replaced by a code in the same manner as the Free-

man chain code [6].

3.2. Spatial Prediction

Let us describe the prediction approach used in the proposed frame-

work for point location and normal. Though we chose the follow-

ing specific prediction approached for concreteness, it is important

to note that our proposed framework extends beyond those specific

prediction schemes.

3.2.1. Point Location Prediction
The prediction problem of the current point location pk is refor-

mulated as the prediction problem of its associated turning angle

αk. Considering that consecutive points are closed enough, it is

reasonable to assume that the curve is locally turning constantly,

i.e., the difference between two consecutive turning angles is near

zero. The predicted turning angle is then expressed as the linear

combination of its two previous ancestors as follows

α̃k = 2 · α̃k−1 − α̃k−2 (4)



where the reconstructed point location p̃k is defined by

p̃k = p̃k−1 +R (α̃k) ◦ vk−1, (5)

with R (α̃k) ◦vk−1 being the 3D rotation of the vector vk−1 wrt

the predicted turning angle α̃k.

3.2.2. Point Normal Prediction
The surface of many objects consist of repetitive patterns and sim-

ilar structure. To exploit this repetitiveness, we propose to search

for a similar portion of curve in terms of shape prior to a close

Euclidean invariant signature. Let us first define the signature of a

space curve, up to a Euclidean transform, by its curvature function

κ(n·∆S) and torsion function τ(n·∆S), both functions of the pa-

rameter n. It was shown in [12] that κ and τ can be approximated

at the point pk by

κ(pk) = ±4 ·

√
s · (s− a) · (s− b) · (s− c)

a · b · c
, (6)

τ(pk) = ±6 ·
H

d · e · f · κ(pk)
. (7)

where H being the height of the tetrahedron form by

pi−1, pi, pi+1, pi+2 of base pi−1, pi, pi+1, and

a = d(pk−1, pk), b = d(pk, pk+1), c = d(pk−1, pk+1),

d = d(pk+1, pk+2), e = d(pk, pk+2), f = d(pk−1, pk+2),

and s = 1
2
(a + b + c). Since κ and τ only depends on the Eu-

clidean distance d(., .) between points, they provide a completely

Euclidean invariant numerical signature approximation. Once the

best similar portion of curve is selected, the geometric transfor-

mation (i.e., translation, rotation) from the best candidate and the

current portion of curve is estimated by least-squares fitting [13].

Finally, the current normal is predicted.

3.3. Spherical Quantization

Figure 4. Quantization cells covering the surface of a 3D unit sphere and

the corresponding vectors in black dot.

Point locations through their turning angle are expressed in

spherical coordinates. We also propose to express normals in

spherical coordinates. The quantization is then achieved through

an uniform distribution of the quantization cells on the surface of

an unit sphere as shown in Fig. 4, at a given quantization parame-

ter interval.

3.4. Adaptive Statistical Model

Under the assumption of a piecewise smooth space curve, the turn-

ing angle distribution can be modeled by a von Mises probabil-

ity distribution, defined below, to assign probability to the current

turning angle αk:

p (αk|αk−1, αk−2) =
1

2π · I0 (κ)
· eκ cos (α̃k−µ)

(8)

where I0 (.) is the modified Bessel function of order 0. The pa-

rameters µ and 1/κ are respectively the mean and variance in the

circular normal distribution; we set µ = αk−1 in our case. The

von Mises distribution is the natural Gaussian distribution for an-

gular measurements. We argue this is an appropriate choice be-

cause: i) it maximizes the probability when the curve turn con-

stantly (α̃k = αk−1), and ii) it decreases symmetrically in left

/ right directions as the turning angle deviates from the predicted

one. We apply the same strategy for the normal vector in the quan-

tization sphere space, where the distance between two normal vec-

tor is the number of distant cells on the surface of the quantization

sphere: e.g. if they belongs to the same sphere, the distance is

zero; if they belongs to neighboring cells, the distance is equal to

one; and so on.

3.5. Adaptive Arithmetic Coding

Arithmetic coding is a powerful entropy coding, and it represents

the current state-of-the-art in lossless compression. One impor-

tant feature of arithmetic coding is that the actual encoding and

modeling of the source can be completed separately. Thus, we

can design our own statistical model that fits our particular appli-

cation and use arithmetic coding in a straight-forward manner. It

has been used in image and video coding for entropy coding for

well over a decade. Unlikely Huffman coding that replaces each

symbol by a variable-length code, arithmetic coding associates the

entire curve C with a sub-interval [a, b) inside the original interval

of [0, 1), such that:

b− a = p (C)

= p (α1, α2, . . . , αN )

= p(1) (α1) · p
(2) (α2|α1) · . . .

. . . · p(N) (αN |αN−1, αN−2)

(9)

The conditional probability reflects the prediction of the cur-

rent point prior to the previous ones. We then used the statistical

model previously designed to adaptively estimate the probability

of each point in the point cloud.

4. EXPERIMENTAL RESULTS

The performance of the proposed framework is evaluated using the

two models shown in Figure 5. The objective compression perfor-

mance of the proposed method is investigated in the rate-distortion

(RD) curves plotted in Figure 6 through the average number of

bits per points (bpp), in relation to the loss of quality, measured

by the peak signal to noise ratio (PSNR). The PSNR is evaluated

using the Euclidean distance between points. The peak signal is

given by the length of the diagonal of the bounding box of the

original model. The bitrate corresponds to the total rate of the

position points and the normals. We compare our model-based

approach against classical residual-based approach by using the

same prediction techniques described in this paper. We see that

our new model-based approach results in significant compression

gain. Specifically, an average bitrate reduction up to 7% are ob-

served.



(a) Model Kick (b) Model Squirt

Figure 5. Test models captured with a setup of multiple projectors and

cameras [2].
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Figure 6. Rate-distortion performance of the proposed encoder.

5. CONCLUSION

We designed and implemented a model-based predictive single-

rate compression for the positions points and normals outputted

by a grid-pattern-based 3D scanning system. The compression

is achieved by directly incorporate the spatial prediction into the

arithmetic coder as a statistical model. Several issues remain that

warrant further research. In future studies, we intend to extend

this work to arbitrary dense point cloud.
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