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Abstract 

The most critical factor affects accuracy of a Struc-
tured Light System (SLS) is calibration. Camera 
calibration is easy to complete because of its extensive 
study. To simplify projector calibration, previous work 
models the projector as an inverse camera and tries to 
build similar 3D-2D mapping data for projector calibra-
tion. Achieved mapping data is directly fed to some 
classic two-step camera calibration methods. When pro-
jector comes with a large distortion lens, this kind of 
methods will fail because their first steps use closed-form 
solution to calculate initial guess for optimization in next 
steps. We proposed a new method to calibrate the pro-
jector by removing its distortion first.  Because projector 
cannot “see” anything, not like camera case, constraints 
such as “straight lines remain straight” working just on 
2D image is invalid for distortion estimation. With 3D-2D 
mapping data, the estimation will involve several extra 
unknowns into a non-linear optimization. We use partial 
mapping data whose 2D points in a “small central area” 
of projector pattern image to acquire an initial guess for 
those unknowns, and then use all mapping data to refine 
them and estimate distortion parameters. Experiments 
show our method can still calibrate the projector when 
classic methods fail. 

1. Introduction 

Nowadays Structured Light System (SLS) is exten-
sively being used in various applications such as reverse 
engineering, augmented reality, medical examination, 
games, movies… A typical SLS is composed of a camera 
and a projector. Usually the projector projects contrasted 
pattern image(s) to encode 3D surface of an object, which 
can be easily decoded through perceived image by the 
camera. Because this technique significantly alleviates the 
matching problem at scanning phase, it comes with some 
inherent and unique features such as high accuracy and 
fast speed. SLS has already become one of the most im-
portant Non-contact 3D shape measurement methods. 
Especially single shot SLS is one of the dominant meth-
ods for fast moving object (or camera moving instead of 
object) scanning. 

The most critical factor affects the accuracy of a SLS is 
calibration. The calibration estimates intrinsic parameters 
of the camera and the projector plus extrinsic ones be-
tween them. Because a projector cannot “see” anything as 
a camera does, it is not straightforward to build 3D-2D 

mapping data for its calibration, neither to estimate its 
lens distortion separately.  Projector calibration happens 
to be the most difficult part of SLS calibration. 

Since a lot of researchers have already done extensive 
studies on camera calibration[1][2], to simplify projector 
calibration, usually projection of a projector is modeled as 
an inverse procedure of a pin-hole model camera. Most of 
previous research [3-6] on projector calibration focused 
on how to set up 3D-2D mapping data and neglected the 
necessity of separate estimation of its lens distortion.  
The acquired 3D-2D mapping data then is directly fed to 
some classic two-step camera calibration methods[1]. 
However, classic two-step calibration methods them-
selves cannot deal with large distortion lens directly, 
because the first step of this kind of methods uses 
closed-form solution to calculate initial values for partial 
parameters. Then the second step is expected to estimate 
distortion coefficients and refine all parameters by 
non-linear optimization. With severely distorted 3D-2D 
mapping data, the classic method will fail to calculate 
initial values. Without good initial guess, the search for 
the global minimum can be difficult and can be easily 
trapped in a local minimum due to the large number 
of unknowns and the ill conditioning of the problem 
[3]. Solutions will be either good initial guess can be 
offered or the 3D-2D mapping data is undistorted in ad-
vance. Actually both of them inevitably need a separate 
estimation of lens distortion. Unfortunately, as mentioned 
above, estimation of lens distortion for projectors is not as 
straightforward as for cameras. 

In the case of cameras, lens distortion can be simply 
considered has nothing to do with perspective model, 
which only occurs on 2D perceived image. Perspective 
invariants such as “straight lines remain straight lines” [7] 
can be used for constraints on this 2D image. Except 
distortion parameters, only a principal point or distortion 
center (some researchers distinguish them into two points, 
some consider them as one) is needed for a non-linear 
optimization. This fact much decreases the number of 
unknowns. In the case of projectors, the 2D image on 
projector image plane is the pattern to be projected out 
and it is not an observation on 3D entities (such as straight 
lines). Not like camera case, the 2D pattern image itself 
here leaves us nothing to be optimized. This is the essen-
tial difference for considering lens distortion between a 
camera and a projector.  

Unfortunately, in many circumstances customized 
projectors with high distortion lens are utilized in a SLS 
such as endoscope scanners. The reason is lens design has 



to compromise to the extremely small size limit of endo-
scope scanners. Another common requirement for micro 
scanners is to use a projector with fixed physical pattern 
instead of a LCD projector. Given above reasons, this 
paper will focus on the calibration of the projector 
with fixed pattern and high distortion lens in a SLS.  

2. Related work 

Because a projector cannot “see” anything, its calibra-
tion must be completed with the help from a camera, 
especially during the stage to build 3D-2D mapping data 
for projector calibration. Depending on different ways 
making use of the camera, previous work can be roughly 
classified into two categories (1) based on uncalibrated 
camera; (2) based on calibrated camera.  The first 
group methods use cameras only for capturing images. 
Usage here has nothing to do with its perspective param-
eters.  One advantage is that accuracy of projector 
calibration does not depend on the accuracy of camera 
calibration. Methods in this category can be further di-
vided into two sub categories (a) One to One Pixel 
Mapping [3]; (b) Active Feature Point Matching [4]. 
The second group methods use camera parameters to help 
with acquiring 3D-2D mapping data for projector cali-
bration. They leaves projector calibration accuracy 
depending on camera but they are easier and faster to 
implement. Methods in this category can also be further 
divided into two sub categories (a) Back Projection [5] ; 
(b) Non-mapping Method [6].  

Legarda-Sáenz [3] describes an absolute phase meas-
urement method, which uses phase shifting patterns to 
encode every pixel on projector pattern image. On camera 
side, captured pattern image can be decoded inversely. 
Thus, a one to one mapping at pixel level from camera 
image to projector pattern image is available. Since any 
3D points captured by camera can be mapped to projector 
image plane, it is easy to achieve 3D to 2D mapping data 
for projector calibration.  Major disadvantage of this 
method is luminance nonlinearity of projectors can cause 
inaccurate camera-projector mapping. Martynov [4] uses 
an active way to achieve the mapping between camera 
image and projector image. By observing from camera 
side, they iteratively adjust position of each projected 
features until all of them coincide with printed features on 
calibration board. Then every printed 3D feature has a 2D 
corresponding feature on projector image plane. The 
challenge for this kind of methods is the accuracy of 
feature coincidence. Ouellet [5] calibrates the projector 
with the calibrated camera and back projection. Methods 
based on back projection use plan-based method to cali-
brate the camera first, and then calculate 3D coordinates 
of projected feature points on checker board with cali-
brated camera parameters. These 3D points and 2D 
feature points on projector pattern give 3D-2D mapping 
data for projector calibration. Kimura [6] calibrates pro-
jector with calibrated camera but does not try to find 
3D-2D mapping data for projector calibration. Instead, it 
utilizes the idea of Structure from Motion. Because fun-
damental matrix needs to be induced by homographies 
between the camera and the projector as its first step, it is 
inevitable for lens distortion from both camera and pro-
jector to contaminate the data. 

All previous work mentioned here use LCD projector 
with non-fixed digital pattern and none of them consid-
ers a separate projector lens distortion to fit the case 
projector lens comes with large distortion. 

3. Our method 

To calibrate the projector with fixed pattern and large 
distortion lens in a SLS, our method first use back pro-
jection to build 3D-2D mapping data for projector 
calibration since this is the only feasible method for 
fixed physical pattern; and then estimate the projector 
lens distortion separately with 3D-2D mapping data; 
finally feed undistorted 3D-2D mapping data to a revised 
classic two -step calibration method (utilizes distor-
tion-free pin-hole model by setting and fixing all 
distortion parameters to zeros). The reason why last step 
does not use a closed-form solution is because even if the 
actual camera is distortion free, nonlinear optimization 
can still improve the closed-form solution [1]. The diffi-
culty here is if the estimation of projector lens distortion 
has to be based on 3D-2D mapping data, planar perspec-
tive transformation or pin-hole model will be involved, 
which could introduce up to 8 or 9 extra unknowns into a 
non-linear optimization. 

3.1. Distortion model and projector model 

We use a sophisticated polynomial distortion model 
which only includes radial distortion, as seen in formula 
(1), since usually tangential distortion is small and ig-
nored. 

(𝑥𝑢 ,  𝑦𝑢) is a 2D point on image plane; (𝑥𝑑 ,  𝑦𝑑) is its 
distorted coordinate; 𝐾1,  𝐾2 are distortion coefficients; r 
is the distance between (𝑥𝑢 ,  𝑦𝑢) and distortion center. 
Usually, second order is enough for the distortion model 
to achieve decent accuracy. Higher order may cause in-
stability instead of further accuracy. Undistortion 
compensation can be solved with Taylor expansion or 
iterative method. For projection, we use classic pin-hole 
model to simulate an inverse camera. Intrinsic and ex-
trinsic parameters are same as those in the plane-based 
camera calibration [8].  

3.2. Distortion estimation with partial 3D-2D 
mapping data 

The distortion estimation method relies on 3D-2D (also 
2D-2D since it is plane based, we will use the word “3D” 
to represent 2D points on plane also) mapping data as 
input and utilizes a fact that central image area has less 
distortion, which was ever mentioned in some papers such 
as [9]. Considering one set 3D-2D mapping points (3D 
points on the calibration board at one orientation), by 
abuse of notation, if without distortion considered, they 
can be represented with formula:  

𝑥𝑖 = 𝐻𝑋𝑖 

𝑥𝑖 is a 2D point, 𝑋𝑖  is the corresponding 3D point on 
checker board;  

𝑥𝑑 = (1 + 𝐾1𝑟
2 + 𝐾2𝑟

4)𝑥𝑢 

𝑦𝑑 = (1 + 𝐾1𝑟
2 + 𝐾2𝑟

4)𝑦𝑢 

 

(1) 



With distortion considered, they can be represented 
with formula:  

𝑥𝑖 = 𝐹𝑑(𝐻𝑋𝑖) 

Function 𝐹𝑑(𝑥) is the distortion function based on the 
model as described in formula (1).  

Because of noise, 𝐹𝑑(𝐻𝑋𝑖) will not equal to 𝑥𝑖  ex-
actly. By minimizing formula (2) with non-linear 
optimization (Levenberg-Marquardt method) ,we can get 
estimated distortion coefficients, distortion center and 
homography matrix. The initial value(s) for distortion 
coefficients are set to zeros, for distortion center is set to 
the center of projector pattern image; initial value of 
homography matrix can be calculated with partial map-
ping data whose 2D points in a “small central area” of 
projector pattern image. How to decide the “small central 
area” will be explained later in the paper. 

c is the distortion center, n is the total number of 2D points 
in one set 3D-2D mapping points. 

3.3. Distortion estimation with full 3D-2D 
mapping data 

The back projection calibration method usually utilizes 
multiple sets of 3D-2D mapping points due to several 
observations on multiple orientations of checker board. 
Apply the minimization in formula (2) (suppose we call it 
atomic optimization) to all sets mapping data (suppose we 
call it one “round”), we will have different sets of esti-
mated variables as well. Among estimated variables, 
distortion coefficients, distortion center are supposed 
to be always same for each set of 3D-2D mapping 
points. To improve the accuracy of optimization result, 
multiple “rounds” optimizations can be performed as 
described in formula (3). At the end of each round, select 
the “best” estimated distortion coefficients and distortion 
center in current round, whose atomic optimization has 
the minimal Mean Square Error (MSE). At the beginning 
of next round, set initial values of distortion coefficients, 
distortion center for all atomic optimizations to the “best” 
estimated values from previous round. 

j represents the index of different set 3D-2D mapping data, 
and m is the total number.  

The reason for multiple rounds optimization is that 
noise may impose different effect on each case checker 
board at different orientation. For example, same checker 
board may cause back projection accuracy worse when 
the board is less vertical to camera optical axis. There is a 
chance to get more accurate optimized variables from 
current round for next round initialization. Using all 
3D-2D mapping data in only one optimization means 
optimization needs compromise to all data. 

3.4. Define “small central area” 

The initial value of homography matrix H for optimi-

zation should be close enough to ideal value, but not 
necessarily very accurate, because H will be refined by 
further optimization as a variable instead of being used as 
a constant.  

Consider the 2D points in one set 3D-2D mapping data: 
based on distortion center, a blank area expands starting 
from the nearest to furthest 2D points. When each point is 
included, by calculating the homography between 2D 
points currently inside the area and their corresponding 
3D points, we can get a value of residual. Figure 1 shows 
an example of the relation between MSE and number of 
points. Set MSE to some a threshold such as 1.0, we can 
get the number of points (178 in the sample) around the 
distortion center. The selection of the threshold can be 
affected by many factors such as feature points density in 
the pattern and etc., therefore for general cases threshold 
setting should be subject to the specific experiment con-
figuration. 

Figure 1. MSE with different number of points  

3.5. Summarization of our method 

Our method has couple different aspects from the 
methods [9][10] using similar ideas. The method in paper 
[10] does not make use of points in a “small central area” 
to calculate a homography matrix. They directly use 
identity matrix as initial value for perspective transfor-
mation in their optimization. The method in paper [9] uses 
calculated homography matrix for optimization but as a 
constant. Experiments in our paper show that optimizing 
the matrix and multiple “rounds” optimization can im-
proves the accuracy. And multiple “rounds” optimization 
can recover wrongly-set distortion center to some extent.  
Another difference from the method in paper [9] is the 
way to decide “small central area”. They use a greedy 
algorithm trying to make H as accurate as possible at 
initialization phase, which could be very time-consuming 
with dense pattern. 

4. Experiments and conclusion 

To evaluate estimated parameters, experiments I to IV 
are conducted on simulated data since it is straightfor-
ward to get ground truth. Our method is based on back 
projection and plane-based camera calibration, so the 
simulation data is generated as following steps (the sce-
nario is as seen in figure 2; An example of the feature  
point images on camera image plane, calibration board 
and projector image plane is shown in figure 3): 

(1) 400 feature points (wave line pattern) on pro-
jector image plane are projected to 3D space 
through projector optical center respectively;  

{𝐾̂1,𝐾̂2,𝑐̂, 𝐻̂} = argmin𝐾1,𝐾2,𝑐, 𝐻{∑ |𝑥𝑖 − 𝐹𝑑(𝐻𝑋𝑖)|
𝑛
𝑖=1 }  (2)  

{𝐾̂1𝑗,𝐾̂2𝑗,𝑐̂𝑗 ,  𝐻̂𝑗} = argmin𝐾1𝑗𝐾2𝑗, 𝑐𝑗, 𝐻𝑗
{∑ |𝑥𝑖𝑗 − 𝐹𝑑(𝐻𝑗𝑋𝑖𝑗)|

𝑛
𝑖=1 }  

{𝐾1𝑗+1,  𝐾2𝑗+1, 𝑐𝑗+1 } = argmin𝐾1𝑗,𝐾2𝑗,𝑐𝑗̂
{𝑀𝑆𝐸𝑗},   𝑗𝜖{0,  1,  …𝑚}  

 

 

(3) 



(2) These projected 3D rays from last step intersect 
with 9 calibration boards at different orienta-
tions (represent one calibration board at 9 
different orientations) and then generate 9 
groups of 3D points;  

(3) All 3D points from last step are captured by the 
camera and leave 9 groups of 2D points on 
camera image plane.  

Figure 2. Simulated scenario and wave line pattern 

Figure 3. Images of feature points on (from left to 
right) camera image plane, calibration board and 

projector image plane 

Simulated input for our method will be 9 groups 
(9*400) 2D points on camera image plane and 400 fea-
ture points (wave line pattern) on projector image plane.  
White noise [-0.1, 0.1] (unit: pixel) is added to input data 
to simulate camera reprojection error and feature extrac-
tion error.  

  Default parameters include projector pattern image 
resolution (2600*1300), MSE threshold (1 pixel) for 
defining “small central area”. Other ground truth is 
shown in each table. Because we generate simulation 
data based on tools in [8]. Ground truth of distortion 
coefficients in simulation data (K1=-8, K2=2) are 
converted already to the format in our method 
(K1=-8.888e-07, K2=2.469e-14). 

The experiment I is to show the result of distortion 
estimation (in table 1)and projector calibration (in table 2). 
Calibration toolbox in [8] stops working under this 
distortion.   The experiment II (in table 1) is to show 
slightly different size of “small central area” does not 
change the final estimation too much. MSE threshold for 
defining “small central area” is set to 2 pixels here. The 
experiment III (in table 1) is to show putting homogra-
phy matrix into optimization as a constant instead of a 
variable achieves less accurate result. In this experiment 
homography matrix is used as a constant. The experi-
ment IV (in table 3) is to show multiple rounds optimi-
optimization can deal with the situation that distortion 
center is not around plane image center. The initial dis-
tortion center is set to (1400,750). In above experiments, 
we can see K2 is very sensitive to noise, and other pa-

rameters are more meaningful to the evaluation. 

Table 1. Distortion estimation (different methods) 

Variables K1 K2 
Distortion 

center 

Minumal 

MSE 

Ground truth -8.888e-07 2.469e-14 (1285,640) / 

Experiment I -8.874e-07 5.193e-14 
(1284.597, 

640.251) 
0.0797 

Experiment II -8.966e-07 9.246e-14 
(1285.001, 

640.727) 
0.0867 

Experiment III -6.258e-07 -1.761e-12 
(1283.727, 

639.715) 
0.3492 

Table 2. Projector calibration  

Variables Focal length Principle point 
Reprojection 

error (SD) 

Ground truth (3000,3000) (1285,640) / 

Experiment I 
(2999.812, 
3000.419) 

(1274.182, 
641.682) 

(0.252, 
0.272) 

Table 3. Distortion estimation (different rounds) 

Variables K1 K2 
Distortion 

center 

Minumal 

MSE 

Ground truth -8.888e-07 2.469e-14 (1285,640) / 

Experiment IV 

(Round 1) 
-4.636e-07 -2.828e-14 

(1344.517, 
727.918) 

2.1680 

Experiment IV 

(Round 5) 
-8.911e-07 1.191e-14 

(1344.516, 

639.192) 
0.0824 

Experiment IV 

(Round 10) 
-8.895e-07 9.390e-15 

(1284.442, 
638.432) 

0.0825 
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