INTERACTIVE 3D ANIMATION SYSTEM BASED ON TOUCH INTERFACE AND
EFFICIENT CREATION TOOLS

Anonymous ICME submission

ABSTRACT

Recently importance of tablet devices with touch interface
increases significantly, because they attract not only mobile
phone users, but also people of all generations including small
kids to elderly people. One key technology on those devices is
3D graphics; some of them exceed the ability of desktop PCs.
Although currently 3D graphics are only used for game ap-
plications, it also has a great potential for other purposes. For
example, an interactive 3D animation system for tablet de-
vices has been developed recently and attracts many people.
With the system, multiple 3D animations are played depend-
ing on view direction and user’s gesture input. However, the
system still has two critical issues: the first one is a compli-
cated process for data creation, and the other is a conflict on
several gestures overlapped at the same position. In the pa-
per, the first issue is solved by using a realtime range sensor
and the second one is solved by considering the relationship
between the 3D object and the input 2D gesture. The effec-
tiveness of the system was proved by making the real system
and creating and manipulating the actual 3D animations.

Index Terms— 3D animation, Touch interface, Realtime
3D scan

1. INTRODUCTION

Touch screen devices, such as iPhone, iPad and Android
tablets become widely used and the touch interface becomes
more common for ordinary people. In addition, the demand
for touch interface is growing in all kind of personal comput-
ers, e.g., Microsoft Windows 8 for PCs. On the other hand,
the rich contents, such as videos and 3D computer graphics
are expected to be killer contents for tablet devices. Although,
videos become one of the most important contents for the de-
vices, 3D contents are currently used only for games and not
so actively used for other purposes. We consider that it is be-
cause the simple static 3D models or simple 3D video from
single view point might not be enough attractive. If both con-
tents are combined to allow users to interactively operate an
animated 3D objects with touch interface, it will be widely
applied to previously unseen contents.

Based on the fact, an interactive 3D animation system for
tablet devices have been developed [2]. With the system, dif-
ferent 3D animations are played depending on a view direc-

tion to the 3D object and user’s gesture input. However, the
system has two critical issues to be more commonly used.
The first one is the complicated process for data creation, and
the other is a conflict on gesture recognition that comes from
an ambiguity on retrieving 3D information from 2D input. In
this paper, solutions for those two issues are proposed.

For data creation of 3D animation, mainly three processes
are required; 1) creation of 3D motion data (we call the data
“3D animation” in the rest of the paper), 2) definition of a
state transition graph for 3D animations and 3) definition of
gestures to call the corresponding animations to play. To
make the process simple and easy, we propose a technique
using an off-the-shelf realtime range sensor and efficient GUI.

The second issue is solved by a visual guidance on the 3D
object considering the relationship between the 3D object and
the input 2D gesture. Since 2D coordinate of the gesture is a
projection of 3D object onto the touch screen, the coordinate
changes dependent on the view direction, and thus, multiple
gestures could be assigned at the same position on the screen.
For solution, single gesture is selected by filtering the multi-
ple gestures using depth information and the angle between
view direction and the gesture direction. In addition, possible
gestures are superimposed onto the 3D object to efficiently
show the next possible gestures to the end users.

The remainder of the paper structure is as follows: Sec-
tion 2 explains the related work and Section 3 is an overview
of the proposed method. Section 4 and 5 detail the system of
the method; Section 6 shows the experiments and a discus-
sion. Finally, Section 7 concludes the paper.

2. RELATED WORK

Development of user-friendly contents is an important key to
make the system popular to ordinary people [5]. In terms of
3D contents, tons of applications have been developed, how-
ever, only games made a success and few other applications
are known. Recently, the framework of an interactive 3D an-
imation was proposed [2]. It uses a state transition graph to
represent the transition of an 3D object as a 3D animation
such as “raise a hand”, “open a tab,” etc. One of the draw-
backs of the system is that it requires several manual pro-
cesses to make the contents, such as creation of 3D anima-
tions, construction of the graph and definition of the gestures
to the graph. Further, there is no solution described how to



Sequence J ~

(State.l State.2 State.3
= = =
ettt
-t AP
(& J
Motion J Motion

Fig. 1. Two types of animations: motion and sequence.

solve the ambiguity between 2D gesture and 3D motion.

About gesture recognition, a number of frameworks for
designing gestures are proposed [?][?]. Zhenyao et al. fo-
cused on the shape of a hand to define overlap-less ges-
tures [?]. Chen et al. proposed the gestures for operate a 2D
content instead of buttons [?]. Avrahami et al. propose a spe-
cial (creator defined) curve by a finger to call a function [6].
To support a large number of functions, Wobbrock et al. pro-
pose a method detecting gestures based on the combination
of the motions of fingers with a multi touch device [7]. How-
ever, all of the gestures are fixed on the 2D coordinate because
the 2D contents do not change their shapes depending on the
viewing direction.

Since the degree of freedom(DOF) of a 3D object is
higher than 2D screen, special consideration is required to
control the 3D object with 2D gesture. Cohé et al. proposed a
recognition method of gestures for controlling 3D objects [?].
Bruno et al. proposed a design system of 3D objects by a
touch interface and gestures [?]. In 3D animation case, one
more degree is required to control the object for temporal di-
rection (total 4D), and thus, previously proposed techniques
cannot be simply applied.

3. OVERVIEW OF THE SYSTEM

The proposed system consists of two types of system; one is a
animation creation system for contents creators and the other
is an interactive 3D animation viewing system for end users.
The animation creation system helps the contents creator
to compose short 3D animations into an interactive 3D ani-
mation with which the end user can interactively control the
3D animation. In this study, we define two types of anima-
tion, such as motion and sequence (Fig.1). The motion is an
animation which represents simple action of the target, e.g.,
”Open a box” or “Raise a hand.” The sequence is a series of
motions, such as “Take a box down from a shelf and open it.”
Before creating a sequence, the creator should make the 3D
animations. With our method, 3D animations are automati-
cally created by using range scanner. After that, the creator
defines the state transition of the motions as a sequence. Then,

Fig. 2. Gesture for controlling animations.

the creator defines a gesture to call the sequence. This is one
of the most important parts to create an interactive animation
with touch interface. However, it is usually a complicated
and difficult task to define the optimal gestures. Therefore,
our system automatically detects the gesture from the cap-
tured data and also provides efficient GUI to edit the graph.
Details of the system are described in Chapter 4.

We also implement the interactive 3D animation viewing
system which works on Tablet PCs. The system detects the
gestures of the end user who tries to manipulate the 3D ani-
mation and an object pose (Fig.2). Since the 3D object can be
seen from arbitrary directions, 1) multiple gestures could be
overlapped at the same position with similar direction on the
screen, 2) some gestures are hidden by objects, or 3) some
gestures are unstable if the directions of which are vertical
to the screen. For solution, the proposed system automati-
cally filters out the unsuitable gestures depending on the ob-
ject pose and the viewing direction. Further guide signs for
valid gestures are superimposed onto the 3D objects to help
the end users to find possible animations. Details are de-
scribed in Chapter 5.

4. ANIMATION CREATION SYSTEM

As described in the introduction, mainly three steps are re-
quired to make interactive 3D animation as follows; those are
usually complicated and difficult tasks for non-professional
users.

1. Creation of multiple 3D animations.

2. Defining a state transition graph for 3D animations.

3. Defining gestures to call the corresponding animations.

To make each process simple and easy to allow the contents
creation to non-professional users, we propose the following
three solutions. Details of each solution are described in the
following sections, respectively.

1. Automatic creation of 3D animation by making the se-
quence of 3D polygons from a point cloud data which
is acquired by the Kinect [3, 4].



(@)

Fig. 3. Scanned by Kinect. (a) raw data of point cloud and (b)
the created polygon for animation.

2. Efficient GUI system for defining the state transition
graph.

3. Automatic gesture assigning method by analyzing the
operator’s hand motion from the captured data.

4.1. Scanning 3D motions by using Kinect

In our interactive 3D animation system, a motion consists of a
series of static 3D polygons. Usually, a 3D animation is rep-
resented by deformations and transitions of a polygon. How-
ever, the creation process of this kind of data is complex and
required special knowledge of 3D animation. Therefore, we
use Kinect for scanning 3D motion of an object to realize the
easy creation of 3D animations. Since raw output from Kinect
is a 3D point cloud of the target scene as shown in Fig.3 (a)
and the point cloud is not suitable for rendering the 3D anima-
tions, our system automatically creates polygon surfaces form
the point cloud as shown in Fig.3 (b). Even if the size of this
data is larger than the animation data which consists of a poly-
gon with its deformations, we consider that our approach is
currently the only solution for practical usage because the lat-
ter data cannot be created with the state-of-the-art technique
yet [?]. Once 3D animations are created, a state transition
graph of those motions for representing a sequence is created.

4.2. Definition of a state transition graph

We need a state transition graphs for representing a 3D anima-
tions. Each edge of the graph represents physical transitions
of motions which correspond to 3D animation as shown in
Fig.4. In our system, there are two animations such as mo-
tion and sequence. Since a sequence consists of a series of
motions, definition of the sequence is an important task. To
make definition simple, only start and end node are required
in our method and the system automatically finds the path
from the start to the end as shown in Fig.4 bold arrows.

We also implement a graphical user interface for contents
creators to create motion graphs easily. This tool enables the
creators to define the relationships of the motions with icon
images. Fig.5 shows the example of the GUI while defining
the motions for the multifunction printer. In this example, we
define five edges as gray lines in the figure out of possible 30

State.3

State.5 State.6

Fig. 4. Graph representation of a state transition model. Edge
(arrow in the figure) corresponds to a specific animation.
Once start and end nodes are given, a sequential animation
is automatically created as a shortest path (bold arrows).

= I VDG Creator
File(F) Edit(E)

Dram Lines

A Animation

Fig. 5. Graphical user interface of the animation creation sys-
tem for creating a motion graph.

edges which represents all the transitions from every state to
all others.

4.3. Automatic detection and assignment of gesture
4.3.1. Automatic detection of the movement of a hand

Manual detection of the gesture for each 3D animation is a
complicated and laborious task. To solve the problem, we
propose an automatic technique to detect gesture from 3D an-
imation by image and geometry processing. The key idea of
the technique is to use the hand in the 3D animation which
is captured at the same time while scanning the target object;
note that the intuitive gesture for manipulating an object with
touch interface is basically as same as the movement of an op-
erator’s hand in real world. The proposed system analyzes the
movement of an operator’s hand by using a RGB image and
depth image given by Kinect as shown in Fig.6. The actual
hand motion detection processes are as follows:

1. Detect the area of color of a hand from a RGB image.



Fig. 6. Detection of a hand motion: (a) Detecting an area of
a hand in RGB images. (b) Detecting a collision between the
hand and an object by using a depth image.

2. Calculate the center of the hand area avoiding the out-
liers in each frame by using mean-shift algorithm [?].

3. An originally captured sequence contains unnecessary
motion of the hand; e.g., when capturing the sequence
of “Open the box” motion, hands moves freely before
and after opening the box. To remove those unneces-
sary motion, we use the depth information to detect
whether the hand is touching the target object or not,
and only the hand motion touching the object is used.
With this process, both the starting and end positions of
the motion and the direction of it are retrieved.

4.3.2. Definition of gesture from the detected hand motion

Since the detected motions of the hand in the previous section
are continuous values, we calculates the simple motion by av-
eraging them. Since we quantize the angle of the direction
of the gesture into eight directions to avoid mis-manipulation,
we approximate the angle of the direction in steps of 45 de-
grees (Fig.7). If a conflict between several gestures is found
by comparing both the starting positions and the directions of
the motions, we change the direction to the next nearest angle.
If the conflict cannot be solved by the operation, we simply
remove the gesture.

4.3.3. Automatic assignment of gestures on graph

With our system, one gesture corresponds to the one 3D ani-
mation, and the 3D animation is linked to the specific edge of
the state graph as shown in Fig.8 (i). In other words, these re-
lationships are all one-to-one and no duplication exists. Con-

Z
=

(1) One-to-one correspondence between gesture, animation and edge

41

4
(i1) All the gestures are assigned to all the nodes

Fig. 8. Example of automatic assignment of gestures on the
state graph. Each arrow represents the gesture. Note that
since 3D animation is reversible, the direction of the arrow
flips at the edge where the corresponding animation is linked.

sidering the fact that each gesture is attached to the 3D object,
we assign all the gestures to all nodes of the graph as shown in
Fig.8 (ii); note that since 3D animation is reversible, the direc-
tion of the gesture flips at the edge where the corresponding
animation is linked.! By the process, gestures are automati-
cally assigned to the graph.

5. ANIMATION VIEWING SYSTEM

5.1. View dependent gesture with touch interface

One of the important feature of the 3D animation viewing sys-
tem is that it needs to change the position and the direction of
the gestures depending on the view direction and the poses of
3D objects as shown in Fig.9. For solution, the system cal-
culates both the distance and angle in 2D space by projecting
3D motion into 2D touch screen to find the closest gesture.

Actual process is as follows. First, 3D motion which are
consistent with the starting position Sg(z, y, z) and direction
Dg(z,y, z) are projected to the screen coordinate as Sg’ and
Dyg'. Input data are given by the tracks of fingers on touch
interface, i.e., the system detects the starting position St(x, y)
and direction Dt(x,y) on the screen coordinate. Then, the
system calculates both the distance between St and Sg¢’, and
the inner product between Dt and Dg'.

!currently loop is not assumed for the state graph.



Fig. 9. Position and direction of the gesture change automat-
ically dependent on the relationship between the view direc-
tion and the object pose.

(a) (b)
Fig. 10. (a) Starting points of gestures are hidden by objects
and (b) the direction of the gestures becomes unstable because
the directions of the gesture is almost vertical to the screen.

5.2. Gesture filtering and visualization for user guide

Since the 3D animation can be seen from an arbitrary direc-
tion with our system, the starting points of gestures are some-
times hidden by objects as shown in Fig.10 (a) or the direction
of the gestures becomes unstable if the directions of which are
vertical to the screen as shown in Fig.10 (b). Therefore, the
system disables the gesture if the starting point of the gesture
is hidden by the object or the angle between the gesture and
the viewing direction is steeper than a certain degree. Then,
the system visualizes the starting positions and directions of
only valid gestures by arrow signs. With the signs, the end
users who are not familiar with the system can easily under-
stand possible gestures to play the animations.

6. IMPLEMENTATION AND DISCUSSION

To confirm the effectiveness of our system, we create interac-
tive 3D animation using Kinect. We create an electric manual
for a multifunction printer. The Data acquisition environment
is shown in Fig.11.

6.1. Creation of a multifunction printer animation
We scanned five animations (motions) of the multifunction
printer. The details of each animation are as follows:

1. Open the top cover to use the scanning function.

2. Open the front cover to access the internal parts.

3. Open the paper feeder.

4. Remove the toner cartridge.

5

. Remove the papers.

TARGET OBJECT

Fig. 11. 3D animations capturing scene.

State.2 State.3

R =g R
A {Q’i »‘-‘l\f\\

State.d

State.6

_‘-;" vl
L
\: “’\-.,__“

Fig. 12. State transition graph of the multifunction printer.

As shown in Fig.12, 3D animations which consist of sequen-
tial polygon data from the point clouds were successfully cre-
ated by our method. Then we configured the state graph with
six nodes (states) using the GUI. The graph was successfully
constructed as shown in Fig.12.

6.2. Automatic detection and definition of gestures

Then, we tested the automatic detection of gesture from the
captured 3D animations. To detect the hand of the operator
easily, the operator wore a red grove. Fig.13 shows the result
of the automatic detection by our method. The multifunction
printer has the toner cartridge and the paper tray inside the
front cover. The result shows that our system correctly de-
tects the position and direction of the front cover, the toner
cartridge and the top cover as the starting point of the gesture.

We also confirmed that the 3D animation viewing system
automatically selected only the valid gestures depending on
the viewing direction. As shown in Fig.14 (b), there were
originally nine gestures on the 3D object including some of
them have the direction vertical to the screen. However, only
valid gestures remained with our filtering technique as shown
in Fig.14 (a).

6.3. Implementation on the tablet PC

We implement our system on the tablet PC, Eee Pad TF201,
Android Ver. 4.0.3. The rendering API is OpenGL ES [8].
This system can play each animation in real time as shown in
Fig.15. However, since our 3D animation consists of a large
number of polygons, it takes about two minutes to read the
polygon at the startup time. This is our important future work
to reduce the polygon data to solve the problem.



Fig. 13. Results of the Automatic detection of gestures. (a)
Gestures around the front cover at the initial state. (b) Ges-
tures after the front cover is opened (state 3 in Fig.12).

(@)

Fig. 14. Selection of the controllable gestures. (a) With the
selection and (b) without the selection. In (b), most of the ges-
tures are overlapped and directions are vertical to the screen,
however, those are automatically removed in (a). If the user
changes the object pose, those gestures appear again.

7. CONCLUSIONS

We proposed the 3D animation creation system that enables
non-professional users to create the interactive 3D animations
easily to promote the 3D contents for tablet devices. We also
proposed the animation viewing system to control 3D anima-
tion by gestures. The contributions of this study are summa-
rized as follows:

1. Automatic creation of 3D animations using an off-the-
shelf realtime range scanner is realized.

2. Automatic detection of gesture and assignment to the
corresponding edge on the state graph using captured
data are realized.

3. Automatic selection of valid gestures with efficient vi-
sualization technique is realized.

For future direction, extension to an entire shape of 3D ani-
mation with reduced number of polygon should be important.

Acknowledgment

This work was supported in part by SCOPE No.101710002
and NEXT program No.LR030 in Japan.

8. REFERENCES

[1] Masahiro Ishikawa, Hiroshi Kawasaki, Ryo Furukawa, and
Yukiko Kawai, “Shape rank: efficient web3d search technique

Fig. 15. Manipulating animation with touch interface.

using 3d features,” in Proceedings of the international confer-
ence on Multimedia information retrieval, New York, NY, USA,
2010, MIR 10, pp. 393-396, ACM.

[2] M. Furukawa, S. Fukumoto, H. Kawasaki, and Y. Kawai, “Inter-
active 3d animation system for web3d,” in Multimedia and Expo
Workshops (ICMEW), 2012 IEEE International Conference on,
july 2012, p. 666.

[3] Zhengyou Zhang, “Microsoft kinect sensor and its effect,” Mul-
tiMedia, IEEE, vol. 19, no. 2, pp. 4 —10, feb. 2012.

[4] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and
Dieter Fox, “Rgbd mapping: Using depth cameras for dense
3d modeling of indoor environments,” in In RGB-D: Advanced
Reasoning with Depth Cameras Workshop in conjunction with
RSS, 2010.

[5] Yukiko Kawai, Shogo Tazawa, Ryo Furukawa, and Hiroshi
Kawasaki, “Efficient meta-information annotation and view-
dependent representation system for 3d objects on the web,” in
ICPR’08, 2008, pp. 1-4.

[6] Daniel Avrahami, Scott E. Hudson, Thomas P. Moran, and
Brian D. Williams, “Guided gesture support in the paper pda,”
in Proceedings of the 14th annual ACM symposium on User in-
terface software and technology, New York, NY, USA, 2001,
UIST ’01, pp. 197-198, ACM.

[7] Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D.
Wilson, “User-defined gestures for surface computing,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, New York, NY, USA, 2009, CHI 09, pp. 1083—
1092, ACM.

[8] P. Cole, “Opengl es sc - open standard embedded graphics
api for safety critical applications,” in Digital Avionics Sys-
tems Conference, 2005. DASC 2005. The 24th, oct.-3 nov. 2005,
vol. 2, p. 8 pp. Vol. 2.



