進化計算を用いた初期位置合わせの不要な全周3次元形状の 自動位置合わせ手法

澤井 陽輔^{1,a)} 小野 智司¹ 中山 茂¹ 川崎 洋¹

概要:本研究では,初期位置および撮影順序を与えなくとも3次元物体の全周形状を復元できる方式を提案する.全周形状の復元は,2形状間でのペアワイズな位置合わせを,計測位置が隣接する全ての形状間で順次行う方法が考えられる.この場合,撮影順序が既知でなければならず,また,途中で一度でも位置合わせに失敗すると,全周形状を復元することができない.本研究では,全周形状復元の問題設定を積極的に活用し,探索範囲を限定して再スタート型 CMA-ES を適用することで高速にペアワイズ位置合わせを行えることを示す.さらに,隣接関係を推定し,全自動で全周形状復元を行える手法を提案する.実験により,プロジェクタカメラシステムで得られた実計測データに対して,全自動での全周形状復元を安定して行えることを確認した.

キーワード: 3 次元全周形状復元,位置合わせ,進化計算, CMA-ES, プロジェクタカメラシステム

An Entire 3-Dimensional Reconstruction Method without Manual Adjustment by Evolutionary Computation

Yosuke Sawai^{1,a)} Satoshi Ono¹ Shigeru Nakayama¹ Hiroshi Kawasaki¹

Abstract: This paper proposes an entire shape reconstruction method which does not require manual adjustment for initial pose and orientation and adjacency information between shapes. Entire shape reconstruction contains its peculiar difficulties, *i.e.*, even just one error of pairwise registration causes a failure of an entire shape reconstruction, or even if there is no failures on all of the pairwise registration, the last and first objects cannot be precisely matched due to accumulated errors. To solve those problems, we propose a method to realize an accurate pairwise registration by reducing a range of variables for rotation to eliminate premature convergence from local optima. In addition, we apply Covariance Matrix Adaptation Evolution Strategy (CMA-ES) which has restart function to realize better performance on pairwise registration. Moreover, automatic adjacency information estimation method is proposed. Experimental results showed that CMA-ES had better search performance than other evolutionary computation algorithms. Finally, we showed several reconstruction results of the entire shape from the depth images captured by a projector-camera system.

Keywords: Three dimensional entire shape reconstruction, Three dimensional registration, Evolutionary computation, Covariance matrix adaptation evolution strategy, Projector-camera system

1. はじめに

近年,3次元形状の計測や取得方法は大幅な進歩を遂げ ており,医療やエンタテイメント,文化財保護の分野で3

 $^{a)}$ k3554230@kadai.jp

次元計測,表示技術の利用は増加の一途にある.このため, レンジセンサによる形状取得が広く行われているが,レン ジセンサは一度に全周を取得できないため,複数の視点か ら計測した形状の位置合わせが必要である.

2形状間の位置合わせ問題は、大域的位置合わせと、詳細な位置合わせに大別される(表 1).前者は、相対位置 関係が完全に未知の状態から、詳細な位置合わせが可能に

¹ 鹿児島大学理工学研究科情報生体システム工学専攻

^{1-21-40,} Korimoto, Kagoshima 890-0065, Japan

衣 1 位直合わせ方式の分類						
	大域的位置合わせ	詳細位置合わせ				
マッチング	形出時海 [9]	ICP[1]				
ベース	心心时间 [3]	Simultaneous ICP[2]				
パラメータ	進化計算 [4]	SIM[5]				
ベース	差分進化 [6]	5101[0]				

表1 位置合わせ方式の分類

なるところまで大まかに位置を合わせることを目的とす る.後者は、周辺に正解の形状があることを前提として、 詳細に位置を合わせることを目的とする.詳細な位置合わ せは、Iterative Closest Point (ICP) [1] や Simultaneous ICP[2] など幾つか代表的な手法が知られており、ある程度 解決されたと考えられている.一方で前者で有効な手法は 確立されておらず、現在も多くの研究が行われている.大 域的な位置合わせ方式は、マッチングベースとパラメータ ベースの方式に大別できる.マッチングベースは、3次元 形状の形状特徴 [3] などを利用して大まかな位置・姿勢を 推定する.この手法では、3次元形状の種類によってアル ゴリズムを変更する必要があるほか、視点変化や計測ノイ ズによって安定した特徴を取得できない場合がある.その ため、現状では大域的な位置合わせを手作業で行うことが 多い.

マッチングベースの問題を解決するために、パラメータ ベースの方式として、メタヒューリスティクスを用いた位 置合わせ手法が研究されている [4]. これは、形状の位置お よび姿勢を直接推定するため、形状の種類によらない位置 合わせが可能である. また、計測環境にロバストであるこ とが報告されている.

近年,安価な3次元プリンタや Kinect などの安価な3 次元スキャナが広く普及しつつあり,対象物体の全周形状 復元の需要が高まっている.全周形状の位置合わせを行う 一つの方法として,2形状間で位置合わせをペアワイズに 行うことを繰り返す方法が考えられる.この場合,途中で 一度でも位置合わせに失敗すると,全周位置合わせが失敗 となる.さらに,大きな失敗がない場合でも,誤差が蓄積 されてしまうため,最後に位置を決定した形状と最初に固 定した形状がずれてしまうという問題がある.

著者らは、これまでに位置合わせ問題に対して自己適応 型差分進化法(jDE[7])が優れている点と角度に制限を与 えることで、局所解に陥りにくく安定して解を発見できる ことを明らかにした[6].また、撮影形状間の隣接関係が事 前に与えられた場合に、ペアワイズに位置合わせを行い、 全周形状を復元し、後処理として誤った1つまでの位置合 わせ結果を訂正する手法を提案した.

撮影形状間の隣接関係が既知である場合,既述のように ペアワイズ位置合わせを繰り返すことで全周形状の復元が 可能である.一方,隣接関係が未知の場合は,全撮影形状 間でペアワイズ位置合わせを行う必要があり,その回数は 撮影回数に対して指数関数的に増加する.さらに,全撮影 形状間でのペアワイズ位置合わせを行うだけでは,全周形 状復元を正しく行えることを保証できず,隣接関係を推定 する必要がある. 撮影形状間の隣接関係を推定する問題は 組み合わせ最適化問題であり,その探索空間は撮影回数の 指数オーダとなる.

本研究では、まず、ペアワイズ位置合わせにおいて再ス タート型 CMA-ES[8] を用いることで、先行研究で適用し た jDE[6], [7] と同程度に安定的に、かつ、jDE よりも高 速に解を発見できることを示す.次に、撮影形状間の隣 接関係推定を巡回セールスマン問題(Traveling Salesman Problem: TSP)に帰着させ、これを解くことで全自動で 全周形状を復元する方式を提案する. 最後に、仮想物体か ら作成したシミュレーションデータ、および、実物体を計 測して得た実データを用いて、提案する方式の有効性を検 証する.

提案する方式

2.1 概要

一般的なレンジスキャナでは、一度に全周の計測ができ ないため、対象物体を回転台に乗せる、計測者が対象物体 の周囲を移動するなどして複数回の計測を行う.このと き、計測後に複数の計測結果の位置を合わせることを想定 して、計測領域がある程度重なるように計測し、以下の手 順で全周形状復元を行う.全ての形状間でペアワイズ位置 合わせを行い、2形状間の相対的な位置と姿勢、すなわち 剛体変換行列を得る.このとき、計測状況から、隣接する 計測結果の上下が反転するなど、角度差が極端に大きくな ることは起こりにくい.よって本研究では、ペアワイズ位 置合わせにおいて、角度の探索範囲を限定する [6].

本研究では、隣接関係が未知であるため、ペアワイズ位置 合わせを全形状間で行う必要がある.このため、ペアワイ ズ位置合わせの高速化が不可欠である.CMA-ESは細かな 起伏を持つ適応度景観に影響を受けにくく、高速に解を探索 することができる.アルゴリズムの性能を比較する Black Box Optimization Benchmarking 2012 (BBOB 2012) [9] において、再スタートを組み込んだ CMA-ES が多くの問題 で上位を占めている.[6]の実験で比較した CMA-ES は、 探索の効率は良いが、局所解に陥るため得られる解の品 質が低かった.そこで、CMA-ES に再スタートを組み込 み、BBOB 2012 で用いられたパラメータ設定を用いる.ま た、評価の高速化のために、最近傍点探索手法として Grid Closest Point (GCP) [10]を用いる.

また、本研究で提案する全周形状復元方式は、1形状を 1ノードとし、2形状間の誤差をエッジとしてグラフを作 成し、全周形状復元をTSPに帰着し、これを解くことで 隣接関係を推定する.最後に推定した隣接順に剛体変換行 列を掛け合わせることで、全周形状を得る.しかし、隣接 順に一つでも誤った剛体変換行列が含まれた場合、全周形

(a) 各個体を評価し、集団の上位(b) 個体の分散共分散行列と、平
 半分を獲得
 均ベクトルを算出し突然変異分
 布を算出

集団を生成する

図1 CMA-ES の処理手順

状復元に失敗してしまう.そこで,[6]で提案した重心の距離を利用した誤り検出を行う.

2.2 ペアワイズ位置合わせ

本節では、隣接する2つの計測結果の位置合わせを行う ペアワイズ位置合わせ問題のモデル化について説明する.

本問題は、点群から構成される 2 つの 3 次元形状の相対 的な位置関係を形状間の重心の並進 (t_x, t_y, t_z) および回転 (α, β, γ) により表し、これらの値を求める問題である.本 問題において、位置合わせを行う形状は対象物体の同じ領 域を重複して計測している.この重複する領域が合致する ように、上記の 6 次元の設計変数の値組を探索する.

ここで、位置合わせを行う2つの3次元形状のうち、位置を固定する形状をターゲット $I_t = \{\vec{p}_{1}, \vec{p}_{2}, ..., \vec{p}_{m}\}$ と呼び、移動させながら適切な相対位置を探る形状をソース $I_s = \{\vec{p}_{1}, \vec{p}_{2}, ..., \vec{p}_{n}\}$ と呼ぶこととする、2つの3次元形状の位置合わせを行うための目的関数 $f(I_s, I_t, T_{(R,t)})$ を以下のように定義する[4].

 $f(I_s, I_t, T_{(R,t)}) = median(d_i) \tag{1}$

ここで、 d_i は、 I_s を構成する i 番目の点(座標を \vec{p}_i とする)における誤差、すなわち、 $T_{(R,t)}$ により剛体変換された座標 $T_{(R,t)}(\vec{p}_i)$ と、 $T_{(R,t)}(\vec{p}_i)$ に対する I_t 上の最近傍点 $\vec{p'}_d$ とのユークリッド距離である.

$$d_i = ||T_{(R,t)}(\vec{p_i}) - \vec{p_d'}||$$
(2)

(g) M_3 (h) M_4

図2 実験に用いた仮想物体と実物体(撮影例)

 I_t 上の最近傍点を高速に求める手法として、2.3 節で述べる GCP を利用した. 剛体変換 $T_{(R,t)}(\vec{p_i})$ は以下の式で表現される.

$$T_{(R,t)}(\vec{p_i}) = R(\vec{p_i}) + t$$
 (3)

上記の目的関数は、位置合わせを行う2形状間において、 5割以上重なり合っていることを想定する.全周形状復元 を行う本問題では、1つの対象物体に対して、8方向以上 の計測を行うこととなる.

2.3 最近傍点探索

2形状間の類似度を評価する際,形状を構成する点群に 着目し,形状間の点同士の距離を用いる方法が一般的であ る.このため,位置合わせを行う過程で,最近傍点の探索 を幾度となく繰り返すこととなる.2形状上の点の総数が 等しい数 N であるとすると,最近傍探索の計算コストは O(N²)となり膨大な時間がかかる.

本研究では、Yamany[10] らが提案した、最近傍点探索 の高速化のための GCP を用いた.GCP は探索空間を 2^n 個、形状の周辺を 2×2^n の空間に区切り、区切られた空間 の中心点と、形状中の点を予め全探索を行い、注目点と探 索空間との最近傍点の距離マップを構築する.空間分割が 多くなるほど最近傍探索の精度は高くなる.マップの構築 コストは、 $O(log_2N)$ であるが、空間分割数が $O(n^3)$ で増 加するため、分割数が増えると構築コストがかかるが、最 近傍点探索はO(1) である. **IPSJ SIG Technical Report**

2.4 再スタート型分散共分散行列の適合に基づく進化戦 略(CMA-ES)

CMA-ES[11]は、進化的戦略 (Evolutionary Strategy:ES) の一種で、単峰性関数や設計変数間に依存関係がある問題 に対して有効である [12].

CMA-ESの探索の様子を図1に示す.図1中の細い線 は適応度の等高線を示し、黒丸は最適解を示し、白丸は局 所解を示す.まず、個体をランダムに生成し、個体を評価 する(図1(a)).次に、評価の高い個体を集団の半分を選 び、個体の分散共分散行列を算出し、評価の高い個体情報 から、突然変異分布の平均ベクトルを得る(図1(b)).最後 に、上記突然変異分布の平均ベクトルを探索範囲の中心と し、突然変異分布の形状と大きさを分散共分散行列から算 出し、分布に従って生成した探索点集合の適応度に基づい て、より優れた解が得られると予想される方向にパラメー タを更新し新たな集団を生成する.これを繰り返すことで 最適解を探索する.

CMA-ES は解の探索効率は良いが,多峰性関数において 局所解に陥りやすい. Hansen[8] らは,進化の停滞を検知 し,再スタートを行うことで,多峰性関数についても効率 的に最適解を求められる事を示した.本研究では,先行研 究で推奨されている最良解が 10+[30n/λ] 世代更新がない 場合を進化の停滞と判断し,再スタートを行うものとする.

2.5 隣接関係推定

全周形状復元を TSP に帰着し解くことで隣接関係を推

	P_1	<i>P</i> ₂	P_3	P_4	P_5	P_6	P ₇	P_8	P_9
P_1	1	1.08E-06	2.87E-06	1.99E-05	2.31E-05	2.7E-05	2.52E-05	4.34E-06	1.07E-06
P_2	1.08E-06	ľ	1.46E-06	2.49E-05	3.04E-05	2.78E-05	2.22E-05	2.38E-05	2.25E-06
P_3	2.87E-06	1.46E-06	7	4.01 E-06	4.39E-05	3.9E-05	3.19E-05	4.68E-05	1.62E-05
P_4	1.99E-05	2.49E-05	4.01E-06	K	1.46E-06	4.88E-06	2.11E-05	5.14E-05	3.53E-05
P_5	2.31E-05	3.04E-05	4.39E-05	1.46E-06	7	1.14E-06	1.11E-06	3.82E-05	2.72E-05
P_6	2.7E-05	2.78E-05	3.9E-05	4.88E-06	1.14E-06	7	1.01E-06	3.87E-05	3.64E-05
P_7	2.52E-05	2.22E-05	3.19E-05	2.11E-05	1.11E-06	1.01E-0		1.89E-06	5.38E-05
P_8	4.34E-06	2.38E-05	4.68E-05	5.14E-05	3.82E-05	3.87E-05	1.89E-06	Ľ,	8.09E-06
P_9	1.07E-06	2.25E-06	1.62E-05	3.53E-05	2.72E-05	3.64E-05	5.38E-05	8.09E-06	-

図 4 V3 における形状間の適応度と推定した隣接関係

定する.1形状を1ノードとして,2形状間の誤差をエッ ジとしてグラフを作成する.全ての形状を使って全周形状 復元を行う条件と,隣接関係にあるペアワイズ位置合わせ で得られた適応度は小さいという点から,最小のコストを 通る経路を探索することで,隣接関係を推定することがで きる.TSP は NP 困難と呼ばれる問題であるが,様々な解 法が提案されており高々数十個のノードであれば正確に解 くことができる.

3. 評価実験

シミュレーションデータ4種類 (V_1, V_2, V_3, V_4) と, 実データ4種類(M₁, M₂, M₃, M₄)を回転台に乗せ,約 40° ずつ回転させ取得したデータを用いて、提案する方式 の有効性を検討するための実験を行う. 3.2 節では,正解 が既知のシミュレーションデータを用いて CMA-ES が角 度に制限を入れたペアワイズ位置合わせ問題を効率的に探 索できるかを調べるため、進化計算アルゴリズムによく用 いられる実数値遺伝的アルゴリズム(GA[13]),差分進化 法 (DE[14]), 自己適応型差分進化法 (jDE[7]), および, 粒子群最適化(PSO[15])の4種類の進化計算アルゴリズ ムと比較を行った(実験1).3.3節では,正しく隣接関係 を推定出来るかを調べるため、シミュレーションデータを 用いて、全形状間とのペアワイズ位置合わせ行った結果を 用いてグラフを作成し、TSP として解けるかどうかの実験 を行った(実験2).3.4節では、実データを用いて隣接関 係の推定および、全周形状復元が出来るかを調べた(実験 3). また,実験2および実験3で,全周形状復元に要した 時間を調べた.

3.1 実験準備

3.1.1 入力データ

本論文では、仮想物体4個から生成したシミュレーショ ンデータ、および、プロジェクタカメラシステムで物体4 個を計測して取得した実データを用いて実験を行った.

仮想物体(V₁, V₂, V₃^{*1}, V₄^{*2})の形状を図 2(a), (b), (c) および (d) に示す.シミュレーションデータは各仮想

^{*1} The Stanford 3D Scanning Repository: http://graphics. stanford.edu/data/3Dscanrep/

^{*2} Infinite Realities: http://www.ir-ltd.net/

図5 実計測データからの全周形状復元に成功した例

物体を仮想空間上でβ方向に 40° ずつ回転させ,9回の計 測を行うことで獲得した.計測で得られた各形状は3,000 点から8,000 点の点群で構成される.

実物体 M_1 , M_2 , M_3 , M_4 の形状を図 2(e), (f), (g) お よび (h) に示す.実験 4 で用いたデータは、上記実物体を 回転台に乗せ、約 40° ずつ回転させ、プロジェクタカメラ システムで計測したオブジェクトである.

3.1.2 アルゴリズムのパラメータ

本論文の実験で用いたパラメータを以下に示す.進化計 算アルゴリズムに共通するパラメータとして,評価回数を 10,000回とした.再スタート型 CMA-ES の個体数を推奨 されている $4+3 \cdot ln(n) = 10$ 個体 (n は次元数) とし,他 の進化計算アルゴリズム (GA, DE, jDE, PSO)の 個体 数 $N \ge 50$ とした.初期個体をランダムに生成した.DE

(b) M₃
 図 6 実計測データからの全周形状復元に失敗した例

シミュレー			
ションデータ	$\operatorname{time}(\operatorname{sec})$	実データ	$\operatorname{time}(\operatorname{sec})$
V_1	227.7	M_1	257.4
V_2	200.4	M_2	306.8
V_3	247.1	M_3	364.4
V_4	258.1	M_4	242.7
美 2	全周形状復	元の宝行時間	1

は、交叉法として二項交叉を用いた. パラメータ設定は文 献 [7] に従い、交叉率 CR = 0.9, スケール係数 F = 0.5 と した. jDE は、交叉法として二項交叉を用い、文献 [7] に 従って $\tau_1 = \tau_2 = 0.1$ とし、その他の F や CR といった パラメータ設定は探索が進むにつれてランダムに変化す るため必要としない. GA は、交叉法として BLX- α を用 い、文献 [16] に従って $\alpha = 0.5$ とした. エリート個体数 を 1 とし、突然変異は行わない. PSO のパラメータは、 文献 [17] に従って慣性項 (w_{min}, w_{max}) =(0.4, 0.9) と設定 し探索が進むにつれて最大値から最小値へと変動し、学習 係数 $c_1 = c_2 = 1.49445$, 個体の速度ベクトル V の最大値 $v_{max} = 1.0$ とした. CMA-ES は初期分布を文献 [9] の実験 条件に従って $\sigma = 0.5$ とした. また、最良解が 25 世代に 渡って更新されない場合、再スタートを行う. なお、全て の実験について試行回数を 30 回とした.

3.1.3 解の探索範囲

ペアワイズ位置合わせ問題は,設計変数の値を正規化し, 各次元の最小値を 0,最大値を 1 とする実数の値を持つも のとした. t_x , t_y , t_z は,物体の最長辺の最小値を 0,最大 値を 1 と正規化した. α , β , γ については, -60° を 0 と し, 60° を 1 として正規化した.

個体が探索範囲外に生成された場合の処理として DE, jDE, GA および PSO では、余剰分を上限または下限から 引く. 例えば、70° は 50° となる. CMA-ES では、範囲内

例 (b) M₃ における例 (1) (c) M₃ に 図 7 誤り検知および訂正の適用前後の例 (左: 誤り訂正適用前,右: 適用後)

に収まるまで個体を生成する.

3.2 実験1 角度制限を用いたペアワイズ位置合わせに おける CMA-ES の評価

最良解の目的関数値の変化を図3に示す.図3の横軸は 解候補を評価した回数(Fitness Evaluations:FEs)を示す. 図から, CMA-ES は他のアルゴリズムよりも早く収束して いることが分かる.また,一度局所解に陥って停滞してい ることがわかるが,再スタートを行うことにより最適解を 発見できている. PSO, GA は十分な品質の解を探索でき ていないことがわかる.

3.3 実験2 隣接関係推定

図4に、シミュレーションデータ V_3 の全探索結果と推定した隣接関係を示す.行、列の P_1 , P_2 ,..., P_9 は形状を示し、添字は隣接する順番を示している.図中の数字は形状間の適応度を示す.図中の破線矢印は、貪欲法により適応度が最低のペアを辿った例であるが、 P_5 , P_7 , P_6 , P_8 と辿るため位置合わせに失敗してしまう.一方で、矢印はTSPを解いて辿った例であり、正しく隣接順を推定できていることがわかる.他の V_2 , V_3 , V_4 も同様に隣接順を推定することが出来た.

3.4 実験3 実計測データからの全周形状復元

M₁, M₂, M₃, M₄の4つの一般物体をプロジェクタカ メラシステムで取得した実計測データをもとに,全周形状 復元を試みた.ペアワイズ位置合わせのアルゴリズムとし て再スタート型 CMA-ES を用い,ほぼ全ての試行でペア ワイズ位置合わせに成功したが, M₂ および M₃ のいくつ かの形状間で失敗することがあった.全周形状復元の結果 の成功例を図5に,失敗例を図6に示す.失敗した理由 は,目的関数が2形状間の重なり具合の中央値であるため, 失敗例のように総点数の半分以上が重なってしまうような 形状の場合,これも解となるためである.特に,図6(a)の ように球に近い形では,このような解が多数存在する.ま た,図6(b)のように形状の一部が球状の場合も,そこで位 置が合ってしまい,自由度が残る.対策としては,ICP な どで良く用いられる,形状全体のずれをコストとして用い て誤った解を除外することなどが考えられる.

最後に,[6]で提案した誤り検出法後処理として適用し, 誤りを訂正した例を図7に示す.4つの一般物体のすべて の試行で適切に全周形状復元を行うことができた.また, 全周形状復元に要した時間を表2に示す.数分で全周形状 復元を行うことができた*³.

4. おわりに

大域的なペアワイズ位置合わせにより,初期位置および 撮影順序を与えることなく3次元形状の全周形状復元を 行う方式を提案した.提案する方式は,全周形状復元であ ることを積極的に利用して,隣接関係を推定する点に特徴 がある.仮想物体を用いた実験で,本方式で利用する再ス タート型 CMA-ES が他の進化計算アルゴリズムと比較し て高速に位置合わせができること,および,隣接関係を正 しく推定できることを示した.また,プロジェクタカメラ システムを用いて計測したデータをもとに,全周形状復元 を行えることを示した.

今後,巡回路の代わりに全域木を作ることで隣接関係を 推定する方法,スケーリングへの対応,および,目的関数 の見直しによる計測時の重複量に依存しない手法について 検討する.

謝辞 本研究の一部は,総務省戦略的情報通信研究開 発制度 (SCOPE) ICT イノベーション創出型研究開発 (101710002) および内閣府・最先端・次世代研究開発支援 プログラム (LR030) の助成を受けて実施されたものであ る.ここに記して謝意を表す.

参考文献

- J.Besl, P. and D.McKay., N.: A method for registration of 3-D shapes, *IEEE Transaction on Pattern Analysis* and Machine Intelligence, Vol. 14, No. 2, pp. 239–256 (1992).
- [2] NEUGEBAUER, P.: Geometrical cloning of 3d objects via simultaneous registration of multiple range image, *Proc. 1997 Int. Con. Shape Modeling and Applications*, pp. 130–139 (online), available from (http://ci.nii.ac.jp/naid/10008212880/) (1997).
- [3] Salti, S., Tombari, F. and Stefano, L. D.: A Performance Evaluation of 3D keypoint Detectors, *International Conference on 3D imaging, Modeling, Processing, Visual*

^{*&}lt;sup>3</sup> PC/AT 互換機 (CPU:Xeon E5607 2.27GHz (2 プロセッサ 8 コア), Mem.:32GByte) の処理時間である

IPSJ SIG Technical Report

ization and Transmission (2011).

- [4] Santamaría, J., Cordón, O. and Damas, S.: A comparative study of state-of-theart evolutionary image registration methods for 3D modeling, *Computer Vision and Image Understanding*, Vol. 115, No. 9, pp. 1340–1354 (2011).
- [5] Silva, L., Bellon, O. R. and Boyer, K. L.: Precision Range Image Registration Using a Robust Surface Interpenetration Measure and Enhanced Genetic Algorithm, *IEEE transactions on pattern analysis and machine intelligence*, Vol. 27, No. 5, pp. 762–776 (2005).
- [6] 澤井陽輔, 篠原 悠, 小野智司, 中山 茂, 川崎 洋:3 次元形状位置合わせにおける進化計算アルゴリズムの比 較検討と全周復元への応用, 情報処理学会研究報告. MPS, 数理モデル化と問題解決研究報告, Vol. 2012, No. 36, pp. 1-6
- [7] Brest, J., Greiner, S., Boskovic, B., Mernik, M. and Zumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems, *IEEE Transactions on In Evolutionary Computation*, Vol. 10, No. 6, pp. 646–657 (2006).
- [8] Auger, A. and Hansen, N.: A restart CMA evolution strategy with increasing population size, *The 2005 IEEE International Congress on Evolutionary Computation* (*CEC'05*) (McKay, B. et al., eds.), Vol. 2, pp. 1769–1776 (2005).
- [9] Brockhoff, D., Auger, A. and Hansen, N.: On the Effect of Mirroring in the IPOP Active CMA-ES on the Noiseless BBOB Testbed, GECCO (Companion) workshop on Black-Box Optimization Benchmarking (BBOB'2012), ACM (2012). accepted for publication.
- [10] Yamany, S., Ahmed, M. N. and Farag, A. A.: A New Genetic-Based Technique for Matching 3-D Curves and Surfaces, *Pattern Recognition*, Vol. 32, pp. 1817–1820 (1999).
- [11] Hansen, N., Hansen, N., Ostermeier, A. and Ostermeier, A.: Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: The Covariance Matrix Adaptation, Morgan Kaufmann, pp. 312–317 (1996).
- [12] Hansen., N.: Invariance, self-adaptation and correlated mutations in evolution strategies, *Parallel Problem Solv*ing from Nature, Vol. 6, pp. 355–364 (2000).
- [13] Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989).
- [14] Storn, R. and Price, K.: Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, *Journal of Global Optimization*, Vol. 11, pp. 341–359 (1997).
- [15] J.Kennedy and Everhart, R. C.: Particle Swarm Optimization, Proc. IEEE Int'l Conf. on Neural Networks, Vol. 4, pp. 1942–1948 (1995).
- [16] Eshelman, L. J. and Schaffer, J. D.: Real-Coded Genetic Algorithms and Interval-Schemata., *FOGA* (Whitley, L. D., ed.), Morgan Kaufmann, pp. 187–202 (1992).
- [17] Li, C., Yang, S., Nguyen, T. T., Yu, E. L., Yao, X., Jin, Y., Beyer, g. H. and Suganthan, P. N.: Benchmark Generator for CEC'2009 Competition on Dynamic Optimization (2008).