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Abstract

We propose a non-rigid registration method for com-
pletion of dynamic shapes with occlusion. Our method is
based on the idea that an occluded region in a certain frame
should be visible in another frame and that local regions
should be moving rigidly when the motion is small. We
achieve this with a novel reliable distance field (DF) for
non-rigid registration with missing regions. We first fit a
pseudo-surface onto the input shape using a surface recon-
struction method. We then calculate the difference between
the DF of the input shape and the pseudo-surface. We define
the areas with large difference as unreliable, as these areas
indicate that the original shape cannot be found nearby. We
then conduct non-rigid registration using local rigid trans-
formations to match the source and target data at visible
regions and maintain the original shape as much as possi-
ble in occluded regions. The experimental results demon-
strate that our method is capable of accurately filling in the
missing regions using the shape information from prior or
posterior frames. By sequentially processing the data, our
method is also capable of completing an entire sequence
with missing regions.

1. Introduction

Acquisition of 3D information is becoming a common
practice in various fields, from projects with cultural back-
ground [14, 18] that try to capture sites, to applications in
robotics [6, 4] that require 3D information to locate where
robots or vehicles are. Conventional research mainly fo-
cused on acquisition of static scenes. However, with the ad-
vent of compact and affordable sensors, capturing dynamic
scenes and objects is on the rise [22, 9, 12]. Acquisition of
dynamic 3D data is significant in situations where marker-
based motion capture systems cannot be used.
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Figure 1: Shape completion using our method. The source
shape on the left is transformed to the target shape at the
center using reliable distance field information.

There are various methods that attempt to acquire the en-
tire shape of dynamic objects [9]. This is usually conducted
by placing multiple sensors or cameras to fully capture the
target shape from all angles. However, when shapes are un-
dergoing deformation, occlusion is inevitable and even mul-
tiple sensors may not be able to capture regions that are oc-
cluded. There are hole-filling methods that attempt to solve
this problem by inserting points or surface patches. These
methods are proposed for static single frame range data and
do not utilize information from the entire sequence.

We claim that a dynamic shape should be completed us-
ing the information available from neighboring frames in
the sequence as much as possible. We base this idea on an
assumption that an occluded region in a frame should be
visible in another. Prior work has mainly tackled the prob-
lem by fitting a template to fill the occluded regions [2] or
by gradually merging similar frames to establish a template,
then transforming the template to each frame [23].

We approach the problem of shape completion through
non-rigid registration. We claim that the pairwise corre-



spondence between neighbouring frames provides signifi-
cant information regarding how the shape is moving and
where points on the surface will go. We assume that trans-
formations of small local regions on the dynamic shape,
visible or not, can be approximated by rigid transforma-
tion. We take advantage of these characteristics to complete
missing regions on dynamic shapes.

We achieve this by representing shapes with a novel dis-
tance field (DF). We determine unreliable regions in the
DF disrupted by occlusions on the original data. We fit
a pseudo-surface onto the original data, and compute the
DFs of the original data as well as the pseudo-surface. We
compare the two DFs and identify regions with significant
difference. We then discard them to create a reliable DF
for surface with occlusion. We emphasize that the pseudo-
surface is only used to calculate the new DF, and is not at
all used to fill holes, as it cannot fully capture details.

In order to robustly conduct registration between frames
while maintaining the original shape as much as possi-
ble, we adopt a locally-rigid globally non-rigid registration
method [8]. The method considers a shape as a group of
local structures that move rigidly to find the best matching
location on the surface. The overall deformation is deter-
mined by the final location of the free form deformation
(FFD) [21] control points, each of which is embedded at
the center of each local structure. The newly proposed DF
allows the registration method to match shapes with occlu-
sions without distorting the original data.

In order to conduct shape completion, we sequentially
select a frame and its subsequent frame, and apply the non-
rigid registration method with the reliable DF representa-
tion. We merge the two frames and use the result as the
source shape for the following frame. We repeat the process
until the end of the sequence to produce a complete model.
We then propagate the final result to prior frames to obtain a
complete shape for each frame in the sequence. This can be
done by directly applying the proposed non-rigid registra-
tion method. Here, we use the complete shape as the source
and partial data at each frame as the target shape.

We demonstrate the effectiveness of the method using
the models from Gall ef al. [9]. We remove some parts from
a pair of frames and apply our method to observe whether
the registration results are accurate. We also test the method
on multiple frames to demonstrate that our method is capa-
ble of completing a sequence of moving shape.

2. Related Work

There are various methods for filling in occluded regions
on a static 3D shape taken from various perspectives [11].
Some directly work to edit polygon information [17], while
others use a volumetric approach to fill the surface [20].

There are also many attempts to reconstruct complete dy-
namic shapes. One main type of hole-filling methods for
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dynamic data is based on templates. Carranza et al. [2] use
a human model to estimate the human pose from silhouettes
from multiple cameras. Anguelov et al. [1] use human mod-
els with different pose and body characteristics to learn the
deformation for each triangle patch. The method then es-
timates the optimal model that best fits the input point set.
This model has been used in other methods to reconstruct
human bodies from partial data [24]. Li et al. [15] deform
a template to input meshes, and then integrate the details
on the original input meshes to the transformed template
to recover the details. Recently, more case-specific meth-
ods have been proposed [5] to handle various garments and
body shapes and provide results with higher quality than fit-
ting a general model. However, these templates are usually
unavailable when considering general shapes in motion.

Methods without templates have recently been proposed
to handle dynamic shapes with occlusion. Method for ar-
ticulated shapes have been proposed by Pekelny and Gots-
man [19]. This method, however, requires rough manual
segmentation of the data. Chang and Zwicker [3] propose
a method that simultaneously solves for the alignment of
shapes and the segmentation of rigid parts. Zeng et al. [25]
introduce a deformation graph to complete articulated shape
models. The method deforms a deformation graph to range
data taken at different times and gradually integrates the re-
sulting graphs. These methods are designed for articulated
objects, and cannot be directly applied to general shapes
undergoing non-rigid transformation.

Hole filling methods for non-rigid shapes have also been
proposed. Wand et al. [23] attempt to form a hierarchy of
frame pairs and merge the pairs of shapes. This process
is repeated until one final shape is obtained, which is then
transformed to each shape in the sequence. Instead of cre-
ating hierarchy of frames, our method attempts to handle
frames sequentially. By assuming that the shapes are locally
rigid in between frames, our method processes the data from
the beginning to the end of the sequence to robustly recon-
struct dynamic shapes.

Another method by Li ef al. [16] attempts to overcome
this issue by first constructing a hole-filled model for each
frame. The complete mesh from one mesh is transformed
to neighboring frames and are combined using Poisson sur-
face reconstruction. The details are synthesized using nor-
mal maps. Our method avoids filling in holes at each frame,
as reconstructed surface may greatly vary depending on the
size of the holes. We achieve this by propagating the visi-
ble shape in one frame to other frames within the sequence
while maintaining their shape as much as possible.

3. Non-rigid Registration with Local Transfor-
mations

Starting at the beginning of the sequence, we deform
each frame to the subsequent frame by non-rigid registra-



Figure 2: Configuration of the registration method. The
source and target shapes A and B are enclosed in a grid
consisting of FFD control points p € P. Each control
point is embedded in a sampling region S, which deter-
mines the local rigid transformation. The transformation
is obtained by minimizing the difference between distance
values ¢4 (s) and ¢p(s), measured at sampling points s.

tion. We base our method on the locally rigid globally non-
rigid registration method [8, 7], which is intended to be used
for data without occlusion. For simplicity, we explain the
method in 2D, but the method can easily be extended to 3D
data by adding another dimension.

We consider the problem of deforming a source shape A
to a target shape B. The method first sets up a grid over
A consisting of FFD control points p € P and a sampling
grid. Each sampling region S in the sampling grid contains
partial DF information of shape A and a control point at the
center. Similar to the template matching method in image
registration, these sampling regions act as templates which
transform to the most similar location on the target. Fig. 2
shows the configuration of the registration method.

The error function can be defined as:

£ [ [atw)(on(p+tr ))¢A<p>)2

A1) (602 + 6,0 )ix. o

where ¢(x) indicates the distance field value at a point x
and ) is the weight balancing the error term and the smooth-
ness term. The weight a(x) = 7= is a sigmoid func-
tion that determines the importance of point p in space, de-
fined relative to the distance to the surface, k£ is the mid-
point of the sigmoid determined by the gap between control
points, and | = $(¢a(x) + ¢B(x)) is the average of the
source and the target DF at point x. The size of the FFD
grid and the parameters for the sigmoid function are auto-
matically determined by the size of the input shape.

To solve for the transformations t, the error function

above is firstly discretized and points s are introduced to
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Figure 3: Registration strategy of source shape A and target
B. The previous method (a) attempts to pull the shape to
close a hole as the difference between distance values at
region around s; is large. Our method (b) defines unreliable
regions and avoids using distance values near holes.

each sampling region to obtain the distance values in each
region. Then, the Euler-Lagrange equation is derived for
each control point from Eq. (1). This is expressed as

a(p) > (68 (p-+ i+ t(p) ~ 94 (p)

3
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= A((1 - a(p) At(p)) =0.

where t = (u,v) is the translation of a point x, t,(x)
é%t(x), and t,(x) = a% (x). p = (z,y) is the FFD con-
trol point and s; (s¥,sY) is the sampling point in the
sampling region surrounding each control point.

Finally, a point a = (a,, a,) on surface A is deformed
by cubic B-spline FFD. The deformation is computed by
adding transformation from each sampling region t,, =
(Upq, Upq) to the corresponding control point:

Z Z By( (ppq + tpq)

This method is effective for registration of shapes with
similar structures in the vicinity of each other. However,
it cannot handle situations where there are missing features
or occlusions in the data, as the distance field is calculated
without considering where the occlusion is. This forces
the method to deform excessively in order to minimize the
difference between distance fields of the source and target
shapes, as demonstrated in Fig. 3. Therefore, the method
cannot be applied to dynamic shapes with occlusion.
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input data O
pseudo-surface R.
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Figure 4: Calculation of reliable region in the distance field.
From sampling points s in space, the distance to the nearest
point in each data is calculated. If the difference between
the distance values from input data and the pseudo-surface
is above A¢gyg, the region will be removed from the regis-
tration process. In this case, data from s; will be removed.

4. Proposed Method

We propose a non-rigid registration method for dynamic
shapes with occlusion. In order to handle missing data, we
first propose a reliable distance field for shape preserving
non-rigid registration method. Then, we propose a shape
completion process for handling partial dynamic shapes.

4.1. Non-rigid Registration with Reliable Distance
Field

We propose a method to determine the reliable regions
in the DF. Fig. 3 shows an example comparing the previous
and the proposed method using reliable distance fields. In
the previous method, distance field is calculated without the
knowledge of holes. The method tries to minimize the dif-
ference between the two DFs. However, in regions around
point s;, the discrepancy between the two distance values is
large, as there is a hole in the surface on top, indicated by
the red curve. As a result, the surface is pulled to the right,
in an attempt to minimize the difference at every sampling
point. Our method identifies such region where accurate
distance field cannot be calculated due to occlusion.

We achieve this by comparing the original data with a
pseudo-surface constructed using the points from the orig-
inal data. Fig. 4 shows our strategy for determining reli-
able regions. For each frame in the sequence, we first fit a
pseudo-surface R onto each input shape O using the pois-
son surface reconstruction method [13]. We transfer the ge-
ometry of the input to the pseudo-surface as much as possi-
ble during this process. We then calculate the DF for both
the input data shape and the pseudo-surface, denoted as ¢o
and ¢g respectively. Finally, we obtain the average of dif-
ferences between two DFs at each sampling point defined
in the registration method, which we call A¢yg.
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Figure 5: Comparison of registration results. (a): Source
(top) and target (bottom) shapes. (b): Registration results.
Source: red, target: green. (c): Source shape after defor-
mation. Top: previous method, bottom: proposed method.
The proposed method maintains the character of the source
shape as much as possible while matching existing parts.

Using this average of differences, we construct our
newly proposed reliable distance field for registration. For
each sampling point in the sampling regions, we calculate
the absolute difference between the distance from the sam-
pling point to the original data, and the distance from the
sampling point to the pseudo-surface. If this absolute dif-
ference is larger than the average difference, we discard the
distance information. In other words, the reliable distance
at sampling point s; is defined as:

{

We calculate this distance for each sampling point, and de-
note the final updated field as ¢'.

Using the reliable distance field, we modify the non-rigid
registration in the previous section and apply it to partial
shapes. We replace the original DF in Eq.(1) with the newly
updated distance field.

We modify the Euler-Lagrange equation to

$o (Sz)
0

‘gbo(si) - ¢R(Sl)| < Ad)avg

otherwise
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m
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where m is the number of sampling points at which dis-
tance values to both the source and target shapes were reli-
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Figure 6: Shape completion procedure. First, the partial
shapes from two consecutive frames are aligned and merged
using the proposed method. This is repeated until the end of
the sequence. Then, the final complete shape at the end is
propagated back to the previous frames. This is conducted
by sequentially registering the complete shape to previous
partial data.

able. In other words, we exclude the sampling points with
unreliable information from calculation of transformations
to only consider the information from existing shapes. Note
that both the DFs of the source and target shapes are re-
placed with the reliable ones. We then apply the transfor-
mations to the FFD control points as in Eq. 3. Fig. 5 shows
an example of the effects from the proposed method.

4.2. Shape Completion

Once the registration between the first two frames is
complete, we merge the two data. When merging overlap-
ping regions, we prioritize the information from the latter
frame, as it should be more accurate compared to the trans-
formed shape from the prior frame. We can achieve this by
transferring geometric data from the prior frame to the lat-
ter, or by methods such as algebraic point set surfaces [10].
The merged result would then be used as the source shape
and is aligned and merged to the the third frame. This pro-
cess is repeated until the end of the sequence to obtain a
complete shape. This is shown as the merging process in
Fig. 6. When some regions are unobservable throughout
the sequence, we apply Poisson surface reconstruction [13]
to the final result to obtain the shape with no missing region.

We then sequentially transform the final shape to the pre-
ceding frames to obtain the complete shape in each frame.
This can be achieved by using the proposed non-rigid reg-
istration method. Here, we set the source shape as the com-
plete shape in frame n and the target as the partial shape in
frame n — 1. Then, the transformed result will be reused as
a source shape to be matched to the partial shape in frame
n—2. This is repeated frame by frame to avoid drastic defor-
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mation as the sequence may involve large motion. As a re-
sult, we can obtain a complete shape for each of the frames.
This corresponds to the propagation process in Fig. 6.

5. Experiments
5.1. Registration Accuracy

To evaluate the validity of our method, we first applied
our method to the dataset provided by Gall et al. [9]. We
selected nearby frames from sequences in the dataset and
compared the registration accuracy between the previous
method by Fujiwara et al. [8, 7] and the proposed method.

We selected frames 186 and 191 from “dance”, 65 and 70
from “handstand”, and 55 and 60 from “skirt” data. These
frames contain large changes in the shapes. We then ran-
domly removed approximately 10% of points from each
shape so that when registered and merged, they should pro-
duce a complete shape. We compared the average distance
between points from the registration results and their clos-
est points on the ground truth from the dataset. For the sake
of comparison, we also registered the original complete sur-
faces using the method by Fujiwara ef al.

The results are shown in Fig. 7. The shape in column
(a) is transformed to the shape in (b) using the registration
methods, and they are then merged together. The shapes in
(c) are the final results using the registration method pro-
posed by Fujiwara et al., the shapes in (d) are the final re-
sults from the proposed method. Finally, column (e) shows
the original target shapes without missing data. The aver-
age distance between points on the merged results and the
closest points on the original shape is shown in Table 1.

The images in the first row are from the ”dance” dataset.
The merged result from the method by Fujiwara et al. con-
tains some residual error at both sides of the person, where
the source and target shapes do not exist. Our method was
able to bring the source shape and the target shape together
by maintaining the source shape as much as possible and fill
the gap. The second row shows the results from the ”hand-
stand” dataset. The missing area on the target shape caused
the result from the previous method to cave in. Our method
was able to remove this unreliable region from registration
and bring the shapes together. The same effect can be ob-
served in the case of “skirt” dataset shown in the bottom
row, where we aggressively removed half of the structure
from the abdomen of the dancer. This can also be seen from
the comparison of residual error in Table 1.

The results demonstrate that our method is capable of
bringing dynamic shapes into alignment even when there
are large holes in the data. The examples show that the
overall shape can be accurately completed when the holes
on two shapes are mutually exclusive.



(a) Source (b) Target

(c) Fujiwara et al. [7]

(d) Proposed

(e) Original Data

Figure 7: Registration results. (a) Source shape, (b) target shape, (c) merged results from Fujiwara et al., (d) merged results

from proposed method, (e) original target data.

5.2. Shape Completion Using Range Data Sequence

In order to demonstrate the effectiveness of the proposed
method for completion of sequential data, we conducted an-
other experiment using the ”dance” sequence from the same
dataset. From frames 90 to 110, we extracted every 5 frames
for the experiment. We manually removed points randomly
from each data, as shown in the top row of Fig. 8.

The bottom row of Fig. 8 shows the results from shape
completion process. First, the frames were sequentially reg-
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istered and merged, resulting in a complete shape at frame
110. Then, we sequentially transformed the complete shape
at frame 110 ((e) bottom) to the shapes at preceding frames
and merged the data. The results show that our registration
strategy is able to gather information from multiple frames
and complete the shapes accurately.

5.3. Limitations

Although in most cases, missing data can successfully
be merged with our method, our method fails when knowl-
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(a) Frame 90 (b) Frame 95

(c) Frame 100

A
7\
¢

(d) Frame 105

(e) Frame 110

Figure 8: Result from shape completion. The frames are sequentially aligned from first to last, leading to a complete shape
in frame 110 ((e),bottom row). The complete shape is then deformed back sequentially to each of the incomplete shapes to

fill in the holes, resulting in shapes at the bottom row of (a) - (d).

| data | Method
[7] Proposed Complete
Dance 7.053111 5.981080 4.653706
Skirt 6.390158 3.767186 3.488573
Handstand || 4.694146 4.187120 3.787354
Table 1: Average distance between points on the final

shapes and the closest points on the original shapes.

edge regarding the target shape is required. An example is
shown in Fig. 9. In this case, taken from frames 177 and 182
in the “skirt” sequence, the skirt is removed from the target
shape. The proposed method tried to complete the shape by
maintaining the source shape as much as possible, leading
to a reasonable merged result. However, the dancer is tak-
ing a step forward during these frames, causing the skirt to
flare. As this is highly unpredictable from just two frames,
the result from our method could not completely match the
original data in this region.

Similarly, our method cannot accurately match shapes
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when the majority or an entire segment of some part is miss-
ing. This is due to the fact that we do not predict the move-
ment of the parts from the sequence. These errors can be
reduced by estimating motion from multiple frames, which
we would like to address in future work.

6. Conclusion

We proposed a non-rigid registration method using re-
liable distance fields to mitigate the effect of holes on dy-
namic shapes. We considered the local motions during a
short interval of time to be rigid transformations, which was
effective in completing missing regions using information
from neighboring frames.

Future work will be on analyzing the sequence of dy-
namic data to determine the quality of shapes. A human
body would deform differently from clothes, and the results
should improve if such information were available. Another
direction would be to consider more than two frames for
estimation of global movement. This should be useful for
completion of parts that are totally obscure in some frames.
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(d) Proposed

(b) target (c) Original

Figure 9: Limitation of the proposed method. The rear part
of the skirt was completely removed from the target shape
in (b). Our method tried to maintain the structure of (a) as
much as possible, leading to a flatter result, as shown in (d),
compared to the original data in (c).
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