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Dense 3D Reconstruction from High Frame-Rate
Video using a Static Grid Pattern

Ryusuke Sagawa, Ryo Furukawa, and Hiroshi Kawasaki

Abstract—Dense 3D reconstruction of fast moving objects
could contribute to various applications such as body structure
analysis, accident avoidance, and so on. In this paper, we
propose a technique based on a one-shot scanning method, which
reconstructs 3D shapes for each frame of a high frame-rate
video capturing the scenes projected by a static pattern. To avoid
instability of image processing, we restrict the number of colors
used in the pattern to less than two. The proposed technique
comprises (1) an efficient algorithm to eliminate ambiguity of
projected parallel-line patterns by using intersection points, (2)
a batch reconstruction algorithm of multiple frames by using
spatio-temporal constraints, and (3) an efficient detection method
of color-encoded grid pattern based on de Bruijn sequence. In the
experiments, the line detection algorithm worked effectively and
the dense reconstruction algorithm produces accurate and robust
results. We also show the improved results by using temporal
constraints. Finally, the dense reconstructions of fast moving
objects in a high frame-rate video are presented.

Index Terms—Dense 3D Reconstruction, Projector-Camera
Systems, Grid Patterns, Spatio-Temporal Analysis

I. INTRODUCTION

Dense and precise shape acquisition of fast moving objects
with high frame-rates has great potential for various fields,
such as body structure analysis, accident avoidance and so on.
For acquiring dense and accurate 3D shapes, many active 3D
scanning systems using point-lasers or line-lasers have been
developed. These methods essentially need time for scanning
because point or line-lasers should be physically moved in one
or two dimensions to scan a scene. Thus, they are not suitable
for scanning fast-moving objects. Currently, 3D scanners that
use area light sources such as video projectors to reduce
scanning times are actively researched [1], [2]. Among them,
spatial encoding methods that use only a single input image
are considered to be suitable for capturing fast moving objects.
A typical spatial encoding method uses a color code, where
reconstruction is achieved by stereo with a window matching
technique [1], [3]. However, since color coding methods are
easily affected by textures and shapes of the objects, they
originally have critical problems for density and precision on
shape reconstruction.

In this paper, two approaches are proposed to solve the
problem by using grid patterns. As the first approach, we
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propose a unified formulation for grid-based 3D reconstruction
with single [4] and multiple [5] projectors based on coplanarity
constraints. For the second approach, we propose a new
formulation of the problem that can efficiently utilize the
properties of the grid patterns based on epipolar constraint
to achieve stable and dense reconstruction.

The first approach relates to shape reconstruction techniques
that use intersections of line patterns [6], [7], [8]. Although
these techniques have advantages that they require no identifi-
cation of line patterns, those methods are based on solving
a large problem of linear equations, which is not efficient
enough for real-time systems. In addition, these techniques are
two step algorithms and require encoding of the patterns into
intervals of lines which leads to sparse reconstruction. In the
second approach, we re-formulate the problem by an efficient
calculation technique that can drastically reduce the number
of variables by utilizing adjacency information between grid
lines. Moreover, if the input is an image sequence from videos,
temporal constraints between frames can be utilized to improve
the results. In this paper, batch reconstruction algorithm for
multiple frames using spatio-temporal constraints is proposed.

Another contribution of the paper is a dense grid pattern
using de Bruijn sequence. Normally, the number of required
colors for de Bruijn sequence increases if unique identi-
fications for all the pixels are necessary. In the proposed
method, however, a small number of colors are sufficient,
because non-unique identifications with the same IDs ap-
pearing periodically are allowed for restoring the scene with
our reconstruction method. Moreover, the grid pattern can be
dense because errors of the identification are corrected up to
some extent with our reconstruction method. To achieve stable
extraction of the grid pattern, connectivity of vertical and
horizontal pixels are efficiently utilized by a belief propagation
technique.

II. RELATED WORKS

Shape reconstruction techniques with a structured light
using temporal and spatial coding are summarized in [9].
Systems using only temporal coding are easy to be imple-
mented and have good features such as accuracy, denseness
and robustness, therefore they have been used for many real
applications [10], [11], [12]. Since the technique needs to
capture multiple images, it is not suitable for high-speed
capturing. Recently, several methods for high-speed capturing
were proposed by using a DLP projector and a high-speed
camera [13], [14], [15]. Zhang et al. [13] and Weise et al.
[14] proposed a stereo system with active illumination based
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on phase-shift. Narasimhan et al. [15] proposed a method
to recognize high-speed temporal codes produced by a DLP
projector. Though these methods can capture range images
at high frame rate, the motion of objects must be relatively
slow in the image sequence to recognize the temporal codes.
Also, in several researches, the required number of patterns
are reduced using both temporal and spatial changes [2], [16].
Hall-Holt et al. proposed an enhanced method to eliminate
the limitation by aligning the reconstructed shape with an
assumption of a limited maximum speed [2]. Davis et al.
proposed an efficient method to reduce patterns by using
multiple cameras [16]. However, since the techniques have
several restrictions as stated above, they are not suited for
capturing objects with fast motion. Some methods [1], [3]
use projectors only to capture textures that change over time
and restore 3D information in similar manner with passive
stereo techniques. Since they still require several patterns for
identification, they are not suited for extremely fast moving
objects.

Techniques using only spatial encoding of a pattern are
suitable for capturing fast-moving objects, since they use only
a single image [17], [18], [19], [20], [21]. On the other
hand, there are other problems, such as they typically need
complex patterns or colors to encode positional information
of the pixel of the projector. To determine the spatial codes
uniquely, the size of the code becomes large. Such patterns are
easily affected by textures, shape discontinuities and pattern
compression caused by tilted surfaces. In addition, decoding
of individual points is done with neighboring points, so
the pattern becomes more complex and image processing is
usually difficult. Thus, 3D reconstruction tends to be sparse
and unstable. Kinect [22] is one of the recent successful
product of 3D scanner with well-balanced accuracy, resolution
and cost effectiveness. It is a projector-camera system that
reconstructs 3D shapes from a single image. Although Kinect
can be efficiently used for the purpose of motion capture and
gesture recognition, 3D quality is not enough for modeling
and inspection purposes.

There are several researches that achieve shape recon-
struction from single images composed of multiple lines or
stripes. Koninckx et al. proposed a technique for dense shape
reconstruction using a simple pattern, i.e., a set of stripes
[23]. Similarly, Frueh and Zakhor [24] used dense vertical
stripes and sparse horizontal lines. The vertical stripes are
used for shape reconstruction and the horizontal lines for
identifying the vertical stripes. Their method depends on
relative numbering of the dense patterns, which assumes local
smoothness of the surface and may be disturbed by shape
discontinuities and line detection failures. In our method, since
it detects discontinuities by using color codes, the shape is
correctly reconstructed even if discontinuities exist. In some
techniques, 3D scenes are reconstructed by regarding projected
line patterns as intersections between 3D planes and the scenes
[6], [7], [8], however, their technique can be only applied for
sparse patterns. To avoid erroneous matching in finding cor-
respondences caused by self-similarities of uniformly-spaced
grid patterns, Ulusoy et al. proposed an irregularly-spaced grid
pattern based on de Bruijn sequence [25], while the method

proposed in this paper introduces a color code based on de
Bruijn sequence.

III. 3D RECONSTRUCTION FROM A STATIC GRID PATTERN
A. Overview

We propose methods to reconstruct the shape from a grid
pattern which consists of two directional parallel lines. Since
all the lines of parallel line sets are identical, correspondences
between the observed projected curves and the lines on
the original pattern cannot be determined by just observing
the lines themselves. Such ambiguity is efficiently solved
by using either coplanarity constraints [7], [8] or epipolar
constraints [26], and shapes are consequently reconstructed.

To project such multiple parallel line sets, using either single
projector as shown in Fig.1(a) or multiple projectors as shown
in Fig.1(c) can be considered. With our method, it is assumed
that the camera and the projector are calibrated, i.e., the
intrinsic parameters of the devices and their relative positions
and orientations are known. Since the projected pattern is fixed
and does not change during the entire process of scanning,
no synchronization is required. An example of the projected
patterns for Fig.1(a) and (c) are shown in Fig.1(b) and (d),
respectively. In the case of multiple projectors, each projector
is required to cast just single directional parallel line sets,
and the grid patterns are formed on the surfaces of the target
objects [5]. In this paper, we explain the solution to obtain the
3D shape by the unified approach of the both setups, followed
by a novel extended method using temporal consistency which
realizes more robust and accurate reconstruction.

The flow of the proposed methods is summarized in Fig.2.
First, dense grid patterns are detected in each frame. To
detect them stably, a method which uses belief propagation
is proposed. Second, the curve ID of each curve which is
detected in the camera image is determined by using the
connectivity of curves. In the case of batch reconstruction
of multiple frames, the correspondences of curves between
frames are also detected and the same ID on the previous
frame is assigned. The details of those image processing are
described in Sec.IV A-C. Finally, 3D shapes are reconstructed
from the positions of the detected grid points and the IDs of
the curves. The reconstruction methods by using coplanarity
constraints and epipolar constraints are explained in Sec.III
B and C, respectively. Then spatio-temporal extension of the
method is explained in Sec.IIl D. Once the 3D shape of
the grid pattern is obtained, dense 3D shape is reconstructed
by interpolating the pixels between the lines; the details are
described in Sec.IV D.

B. Shape from grid pattern based on coplanarity constraint

In this section, 3D reconstruction based on coplanarity
constraints is explained. A set of patterns of parallel lines is
used as a structured light. Each of the line patterns emitted
from the projector sweeps a plane in the 3D space. We use
a term light plane to represent such a plane. Then, lines
projected onto the target scene are detected from the image.
Certainly each detected line corresponds to a light plane;
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however, the actual position of the plane cannot be determined
just by observing the lines.

Fig.3 shows that each line of the grid pattern forms a
light plane in the 3D space and is observed as a curve
in the camera image. Fig.3 (a) and (b) are the cases with
one and two projectors, respectively. In both cases, the grid
pattern is formed by horizontal and vertical lines, which sweep
horizontal and vertical light planes in the 3D space. We assume
both the vertical and horizontal planes do not include the
optical center of the camera. Thus, the vertical plane can be
represented by v - x + 1 = 0, where v is a 3D vector of the
parameters of the plane and x is a 3D point in the camera
coordinates.

All the vertical planes include the axis of the pencil of
planes. Let the 3D line of the axis be represented as p,, +tl,
where p,, is a point and 1 is the directional vector. Then, v
should fulfill v-p, +1 =0 and v -1, = 0. By solving these

equations, we obtain
vV =vg+ W(Pv X lv) =vVvo + 77VI7 (1

where vg is an arbitrary vertical plane, and v/ = p, x l.
Similarly, a horizontal plane h can be represented by h =
ho + p(pr X 1) = hg + ph’, where py, + tly, is the axis of
the pencil of planes, hg is an arbitrary horizontal plane, and
h' = p, x L.

If a grid point (i.e., an intersection point between vertical
and horizontal curves, some of which are shown in Fig.3)
is detected, the vertical and horizontal curves are included
by a vertical plane v and horizontal plane h, respectively.
Therefore, the following equation is fulfilled:

u-(v—h)=0, 2)

where u = (u, v, 1) represents the 2D position of the detected
grid point (u,v) in the normalized camera coordinates (see
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Fig.3(a)). Intuitive meanings of this equation can be found in
the work [7]. From the above equations, we obtain

(w-v)n—(u-h')p=—u-(vo — ho). 3)

This is a linear equation with respect to n and p, and a
constraint to determine the parameters of planes, which we
call a coplanarity constraint. It is common for the both cases
of one and multiple projectors shown in Fig.3(a) and (b).

By accumulating Eq.(3) for all the grid points, a linear
equation

Ax=Db €]

is obtained, where A 1is the coefficient matrix, x is the
parameter vector [nl...nMpl...pN]T, b is the vector of
the constant terms, and M and N are the numbers of the
detected vertical and horizontal curves. If this linear equation
is solved, the 3D shapes of the detected curves are calculated
by triangulation between the light planes and the lines of
sights.

In the case of one projector, the linear solution is not unique
and has one degree of freedom. In this case, the two pencils
of planes share one plane (plane S in Fig.3(a)). By setting this
plane to be v = hg, Eq.(4) becomes Ax = 0. The solution
is obtained by calculating the eigenvector associated with the
minimum eigenvalue of AT A. The 1-DOF indeterminacy of
the equations pointed out by Furukawa [4] corresponds to the
scaling ambiguity of the eigenvector.

The 1-DOF indeterminacy can be removed by using knowl-
edge of the projected pattern. Since the system is calibrated,
the actual patterns cast by the projector are known. Thus, the
solution can be acquired by matching the solution with the
known pattern using 1D search [4]. For this reason, the pattern
should be locally unique and the line intervals can be used
as a simple solution, i.e., random intervals [4]. Additionally,
since the projected pattern in this paper is encoded by a
periodic color code, this constraint contributes to improve the
robustness of matching [27].

The method with two projectors resolved this ambiguity by
setting the projectors so that their axes 1, and 1, are skew
(i.e. do not intersect in 3D space). In this case, the constant
vector b becomes nonzero because the plane shared by the
two pencils of planes does not exist. The solution is uniquely
calculated by x = (ATA)"'ATb as proven in [28]. Since
the 1D search is not necessary for the case of two projectors,
both vertical and horizontal lines can be dense with uniform
intervals, which improves the reconstruction of thin and small
objects [28].

C. Unique linear solution based on relative coordinate and
epipolar constraint

In this paper, we propose another approach to obtain a
unique solution by the unified formulation for the cases of both
one and multiple projectors. In the above formulation, the line
intervals are only used for matching between patterns after the
coplanarity solution. In the new approach, we use the intervals
as an additional constraint. Especially if the interval of the
lines is uniform, the parameter becomes 7;11 — 1; = const,,

where 7,41 and 7; are the parameters of adjacent curves in
a linked set of curves, which share the intersection points.
Similarly, the constraint for horizontal curves is defined as
pj+1 — p;j = consty. These constraints can be directly added
to Eq.(4). Once this constraint is introduced, the problem of
3D reconstruction from grid patterns can be explained based
on epipolar constraints.

First, we consider the case of one projector. A pixel (z., y.)
is an intersection point of a vertical curve and a horizontal
curve. Since the projected lines are encoded by a periodic color
code, each curve has a periodic ID. In Fig.4(a), the vertical
curve is k,-th curve in m,-th cycle of the periodic pattern in
the linked set of curves, where ¢ is the number of lines in a
cycle. Similarly, the horizontal curve is kj-th one in my-th
cycle. The coordinate of the intersection point in the projector
coordinate system is represented by (z,,y,) = (w,((m, +
s)e + ky),wp((mpy + t)c + ky)), where w, and wy, are the
intervals between lines. s and ¢ are the offsets of cycles, which
are unknown from the curve detection since the coordinate
calculated by curve detection is relative one in a linked set of
curves.

This correspondence gives the following epipolar constraint:

[Zps Yps 1F[2¢, ye, 1] T =0, (5)

where F' is the fundamental matrix between the camera and
the projector. Since the unknown variables in this equation are
only s and ¢, Eq.(5) is a linear equation, which is obtained for
all the intersection points. The parameters are shared by the
pixels in the same linked set. If the numbers of linked sets of
vertical and horizontal curves are Ng and N, the following
simultaneous linear equation is obtained:

Bx=b }T7 (6)

where B is the coefficient matrix and b is the vector of
constant terms. The number of variables is N, + /N;, which is
much smaller than the number of curves in the camera image.

The second setup is the case of multiple projectors. If
the points of projector 1 and 2 corresponding to a camera
point (z¢,y.) are (Tp1,Yp1) = (w1((m1 + s)c+ k1), s") and
(Tp2, Yp2) = (wa((ma+t)c+ks),t'), respectively, the epipolar
constraints are expressed as follows:

, X =[S1,.., SN, b1, -, TN,

[2p1,5, 1|F 1 [Te, ye, 1] T =0 (7)
[2p2, ', 1| Fa[zc,ye, 1] =0 (8)
[2p1,8, 1|F12[2p2, ', 1] =0, ©)

where F, F5 and F'5 are the fundamental matrices between
the camera, projector 1 and 2. In this formulation, each
projector emits a set of lines parallel to the vertical axis of
the projector image. If the direction of lines is different, the
representation of projector points can be modified without
loss of generality. This situation is illustrated in Fig.4(b). The
corresponding points are defined by the three pairs of epipolar
lines. s’ and ' are auxiliary variables, which are expressed by
linear polynomials of s and ¢ from Eq.(7) and (8), respectively.
By substituting s” and ¢/, Eq.(9) is expressed by the terms of
st, s,t, and constant.
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polynomials of s and t.

To make Eq.(9) linear, we introduce a new variable r = st
to replace the second-order term. Eq.(9) can be regarded as a
linear equation of r, s and ¢. Similar to Eq.(6), r, s and ¢ can
be solved by gathering the constraints of all the intersection
points. If B in Eq.(6) is full rank, a unique solution is obtained.
Since each row of B means the epipolar line at the intersection
point in the projector coordinate system, B is full rank if they
are not parallel.

The proposed formulation can be extended to the case of
three or more projectors. If m projectors are used, a pair of
patterns is chosen out of them and the constraint equations
are created by using the regions of the pair. The simultaneous
equation is obtained by using (’g) combinations of patterns.

Since the nonlinear constraint 7 = st is omitted from the
system in the above linear solution, the obtained solution may
not satisfy it in some cases. Especially, it happens when the
regions of three or more patterns are overlapped. Therefore,
we use the linear solution as an initial guess and improve it
by nonlinear minimization of Eq.(9).

Since s and t are the numbers of cycles, they are integer
values. The linear solution of Eq.(6), however, can be non-
integer due to the error of calibration and image processing.
The problem, therefore, becomes an integer least square (ILS)
problem, in which the linear equation is solved under the con-
straint that the solution must be a set of integers. It is known
that this problem occurs in the case of GPS measurement [29].
In this paper, we implemented an ILS solver based on one of
the solvers, MILES [30], to obtain s and t.

D. Batch reconstruction of multiple frames with spatio-
temporal constraint

The method explained heretofore reconstructs 3D shapes
frame by frame. If the motion of objects is not so fast
compared to the frame rate of the video, the correspondence
between frames can be found by image processing, which
can improve the robustness of reconstruction as the spatio-
temporal constraint.

Now, we assume that the corresponding points between
frames are given by the method described in Sec.IV-C. If two

points at frame 7" and 7'—1 have the correspondence, their cor-
responding points in the projector coordinate are represented
by (wy (Mo, 7+ s7)c+ ko 1) Wi ((Mp, 0 +t7)c+ kp,r)) and
(o ((My,7—1 + s7-1)C + ky 1), W ((Mp,r—1 + tr—1)c +
kn,r—1)), respectively. Since their periodic curve IDs are the
same, k, 7 = ky,,7—1 and kp v = kp,r—1. The parameters at
frame 71" become

(10)
(11

It indicates that the parameters at frame 7' can be replaced
by those at frame 7' — 1, and thus, the constraints can be
extended to multiple frames. For the frames f = 1...7,
the parameters at frame f are calculated by solving Byx; =
by, x; = [S1,f,---+ SN, fst1,f5---»tN, ] independently. If
all the parameters at frames 2...7 have correspondences
between adjacent frames, it can be modified as

ST = S7—1+ My T7—1 — My, T,

tr =tr_1+mpr-1 —MpT.

By---By] x1 = [by,---by]". (12)

The parameters at frame 1 are estimated by using all the
frames, and the rest of parameters are calculated from x;.
Since the number of parameters in Eq.(12) is much smaller
than that of frame-by-frame solution, the robustness can be
improved.

E. Discussions about grid-based 3D reconstructions

To conclude this section, we discuss the relationships be-
tween two 3D reconstruction approaches described in this
section. One approach uses coplanarities of the grid points
(Sec. III-B). With this approach, it was revealed that the solu-
tion of coplanarity constraints has 1-DOF indeterminacy [8].
Such ambiguity can be efficiently solved by using positional
information of the projected lines that are predetermined
and known. Since the combination of the coplanarity con-
straints and the positional information of the projected lines
is equivalent to epipolar constraints, it can be understood that
the coplanarity-based approach also implicitly uses epipolar
constraints.
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On the other hand, the second approach explicitly uses
the epipolar constraints to solve the ambiguity (Sec. III-C).
In this method, lines are arranged to configure the periodic
pattern and the ambiguity of the phase is efficiently solved;
Note that the problem is same as the phase unwrapping
process of the phase-shifting methods [31], [13], [14]. Several
approaches have been proposed to solve the problem with a
single image, e.g. a composite pattern of multiple phases [32],
and the assumption of small motion between frames [33].
Therefore, our solution is an alternative solution for phase
unwrapping problem using geometric information (epipolar
constraint in this case) instead of using several different phases
in previous methods. One advantage of our method compared
to the previous methods is that our method requires only two
patterns; such a feature is critical to one-shot scan.

Pros and cons of the two approaches is as follows. Since the
coplanarity method does not assume the adjacency relationship
on detected lines, shapes can be reconstructed even if the
lines are poorly detected and/or some lines are missing.
However, it remains one degree of indeterminacy and should
be solved by additional matching process, resulting in sparse
reconstruction and high computational cost. On the other hand,
with the approach using epipolar constraints, although robust
line detection is required to ensure the adjacency between
lines, the solution can be directly retrieved by solving linear
constraint equations without any other information; with this
feature, dense reconstruction is realized by using a dense
regular grid pattern.

IV. IMAGE PROCESSING WITH GRID PATTERNS

The detection of color line patterns proposed in this paper
consists of three steps. The first step is detecting curves
and discriminating them for vertical and horizontal directions
regardless of the colors, and the second step is decoding the
periodic color code based on the de Bruijn pattern as shown in
Fig.1 (b). The third step is calculating dense phase of periodic
pattern by interpolating curves.

In the previous studies using stripe patterns, many colors
were used to get unique correspondences. In that case, the
cross talk of RGB spectrum severely affected the image
processing. Since our method uses maximum two colors, we
can detect the line as a peak of intensity regardless of color
information in the perpendicular direction of the line, which
can efficiently avoid the cross talk problem. By using our
method, dense lines that exist every other pixel can be detected
in theory.

A. Detecting lines of grid pattern

The pattern emitted from one or multiple projectors consists
of multiple sets of parallel lines. First, we detect a set of
curves in a camera image as the projection of parallel lines by
discriminating them from the other sets of curves. We use the
direction and color of curves for discrimination. We assume
that curves in a camera image to be detected are nearly vertical
curves, because we can rotate the image if the directions of the
target curves are different. Additionally, the colors of lines are
encoded by using two of RGB colors, for example blue and

cyan, in this paper. In this case, all lines have blue component
and curves are detected by using blue plane of the camera
image.

A curve is regarded as a set of connected pixels that has
a peak value of intensity along the direction perpendicular
to the curve. In this paper, instead of detecting peak pixels
directly, we consider the problem as the segmentation of pixels
with respect to the derivative of the intensity along an axis.
Consequently, a curve is detected as a boundary of different
segments.

To take the continuity of a curve into consideration, we
propose a method of segmentation based on the belief prop-
agation (BP) [34], which is an energy minimization problem
on a graph defined by

E(f):ZDp(fp)+ Z Wig(fps fa)

peV (p,a)€U

13)

where f is the set of labels to be determined, V' is the set of
nodes, U is the set of edges, and p and ¢ are the nodes of
the graph. D,(f,) is the data cost of assigning label f, to p.
W fps fq) s the discontinuity cost of assigning labels f, and
fq to neighboring nodes. Graph cut [35] can be an alternative
as a method to solve an energy minimization problem, but we
chose BP because the cost computed in BP is also used to
detect curve position in sub-pixel accuracy as described later.

In detecting curves, the nodes correspond to pixels of the
camera, and the edges are the connection to 4-neighboring
pixels. The proposed method discriminates every pixel to
three labels based on the derivative of the intensity along x-
axis (horizontal) of the camera. The labels are positive (P),
negative (NV), and nearly zero (0). From the definition of the
curve defined above, the curve is detected as the boundary of
the labels P and N.

The data cost D,(fp) is computed by the forward difference

Iz +1,y) — I(z,y) it fp=N
—(I(z+Ly) —I(z,y) if f=P

where I(z,y) is the intensity at a pixel p = (x,y). The
discontinuity cost W4 ( fp, f4) depends on the direction of the
edge as follows:

Mg = fp)I(z+ 1Y) — I(z,y))
if the edge (p, q) is along x-axis
|fq - fp‘ ’
if the edge (p, q) is along y-axis

where f, and f; are O, 1, and 2 for the labels N, 0, and
P, respectively. \ is a user-defined parameter. Because of
changing the discontinuity cost with respect to the direction
of the edges, the proposed method can detect vertical curves
while the horizontal curves are ignored even if they are the
same color. The label of each node is determined by choosing
the label of the minimum cost. If the boundary of the labels
from P to N is detected, the subpixel x-coordinate of a point
in the curve is computed by

Cp(N) — Cp(P)
(CP(N) - CP(P)) - (Cq(N) - Cq(P))’

qu(fpa fq) =

x4 (15)



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 5.

The proposed method discriminates every pixel to three labels based on the
derivative of the intensity along x-axis (horizontal) of the camera. The labels are positive

cost
=1
—
0]
>
w
=
<<

C,(N)-C,(P)
X+
Cm-c ) m-c.p)
Fig. 6. The subpixel position of a curve is computed

by interpolating the crossing position of the costs.

(P), negative (IV), and nearly zero (0). This figure shows an example of vertical curves.

where Cp,(fp) is the final cost, which is computed as the sum
of the data cost and the messages (Fig. 6). The x-coordinates
of p and g are x and = + 1, respectively. A curve is given
by connecting detected points along vertical direction. Since
the effects of horizontal curves are removed in the cost when
detecting vertical curves, we interpolate the final cost instead
of using the input image directly.

Fig. 7 shows the example of detecting vertical curves. (a)
is the input image. (b) and (c) shows the changes of labels by
message passing. Each pixel classified to the labels P (red), N
(blue), and 0 (black). The effect of horizontal curves remains
in the initial state and it disappears after ten iterations.

B. Determining periodic color code

Next, we decode the color code based on the de Bruijn
sequence [17], [20], [36]. A g-ary de Bruijn sequence of
order n is a sequence of length g™ consisting of an alphabet
of size ¢ in which every possible subsequence of length n is
presented exactly once. If a projected pattern is encoded by
two or more symbols distinguished in a camera image, the
correspondence between an element in the projected pattern
and the observed pattern is uniquely determined by matching
subsequences of length n in a de Bruijn pattern.

There are three advantages to use color patterns. First,
wrong connection of curves can be reduced by color infor-
mation. The second advantage is that matching the sets of
planes becomes easy by using color patterns as described in
Sec. III-B. Without color patterns, all combinations between
projected and observed patterns must be compared to solve the
ambiguity. The third advantage is that it is useful for finding
the correspondence of grid points between frames when the
shapes of multiple frames are simultaneously reconstructed
based on the method described in Sec.III-D. The IDs assigned
to vertical and horizontal curves can be used as the feature
for matching points. The probability of wrong correspondence
drastically decreased by using the IDs.

For robust decoding, two dimensional regularization based
on BP is used in our method. We use the grid points as the
node of a graph and the edges are determined by the detected
curves as shown in Fig. 8. Since each cycle consists of eight
lines, the number of IDs is eight. The data cost D, (f,) for

decoding the de Bruijn sequence in the vertical curves is
defined as follows:

Dy(fp) = |H(p) — H(fp)l,

where H(p) is the hue of the grid point, and H(f,) is the
hue of the projected light for the curve of f, =0,...,7. In
actual case, since the color of a grid point is affected by both
vertical and horizontal curves, H(p) is computed as the hue
at the midpoint between the grid point p and its neighbor grid
points. Fig. 8 shows an example of determining the hue of a
vertical curve that consists a grid point. It is computed as the
average of two midpoints p; and ps.
The discontinuity cost Wy, (fp, fq) is given by

Wg(fp, fq) = min(|(f, + d(p, q)) mod 8 — fql,
|8 - (fp + d(p, Q)) mod 8 — fq|)2 (17)

where d(p,q) is 1 if ¢ is on the next horizontal curve in the
+y direction, -1 if ¢ is on the next horizontal curve in the —y
direction, and O otherwise. The definition means that the IDs
increase or decrease along the horizontal direction while they
should be same along the other directions. The example of the
result of curve detection is shown in Fig. 7(d).

(16)

C. Matching grid points between adjacent frames

Since the relative position between the camera and the
projector is fixed, a grid point exists on the epipolar line even
if the target object moves during the observation in the case
of one projector. The corresponding points between frames,
therefore, can be found along the epipolar line. In Fig.9, the
candidates of the corresponding point of a grid point p at
frame T are p’ and p” at frame T — 1, which are on the
epipolar line of p. Because each grid point has two curve IDs
of the vertical and horizontal curves, the corresponding point
is chosen from the one that has the same curve ID among the
candidates. If multiple candidates remain, the closest one from
the grid point is chosen.

In some cases, wrong correspondences can occur due to
the error of curve detection or inaccurate calibration. Since
the points corresponding to the grid point on a curve should
be on the same curve, we remove wrong correspondences by
voting the curves that the corresponding points belong to. If
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Fig. 7.

T3

Curve detection based on BP. (a) is the input image. (b) and (c) show the labels by message passing after 0 and 10 iterations, respectively. Each

pixel classified to the labels P (red), IV (blue), and O (black). (d) is the result of curve detection. (e) is the phase computed by using Gabor function.

Frame T-1
Epipolar line

The hue of a curve

Fig. 8.
that consists a grid point is de-
termined by the average of two
mid points.

Fig. 9.

the number of votes for the curve is small, the correspondence
is regarded as wrong and removed. Since the correspondence
for all grid points are not necessary for the proposed method,
it is sufficient if grid points are connected to the adjacent
frames as a graph representation to use the information for
both recomputing the curve IDs and 3D reconstruction.

Once the correspondences of grid points between frames
are given, the information can be used to re-compute the
curve IDs by using the three-dimensional graph as shown
in Fig.10. A grid point p is connected to adjacent points by
temporal correspondence between adjacent frames in addition
to horizontal and vertical curves. The curve IDs are computed
based on BP again with three-dimensional regularization. In
this case, d(p,q) in Eq.(17) is 1 for gy, -1 for ¢,—, and 0
for ¢, and ¢;.

In the cases of multiple projectors, the grid point is on a
line different from the epipolar line, which is the projection
of intersecting line of two light planes onto the camera image.
Since the directions of the lines depend on the combination of
pattern planes, it cannot be computed a priori. We therefore
search the neighborhood to find the correspondence instead of
searching along the epipolar line.

D. Calculating dense phase of periodic code for all pixels

Since the number of lines in a cycle is ¢" = 8 where ¢ = 2
and n = 3, the IDs of curves are assigned from 0 to 7. They
are integer values and assigned for the pixels on the curves.
The values for the pixels that are not on the curves can be

Vertical line &

Frame T

The candidates of the corresponding point of
a grid point p are p’ and p’’ that are on the epipolar
line of p. The corresponding point is chosen from the
one that has the same curve ID among the candidates.

Frame T-1

Fig. 10.

in Eq. 17 is 1 for qp4, -1 for g, —, and O for g, and g¢.

computed by interpolating the curves, and it is considered as
the phase of the periodic function.

Fig.11(a) is an example of the cost functions C,(P) and
Cp(N) of vertical curves which are computed in Sec.IV-A.
The cost functions become periodic along the horizontal axis
and the frequency varies according to the object’s shape. The
grid lines correspond to the positions where C),(P) = C,(N)
and %QEP) < 0. By computing the offset relative to the
grid lines for each pixel, the corresponding coordinate in the
projector image can be obtained.

In the proposed method, the cost function is approximated
by a sine curve, and the phase is used as the offset relative
to a curve. Since the interval of lines is constant, the phase
of each pixel for the curves is computed. The algorithm for
computing phases with vertical curves becomes as follows:

1) For the pixels of which the vertical coordinate is ¥, find
the positions of curves and compute the gap between
adjacent two curves. Let L(x) the gap at a pixel (z,y)
as shown in Fig.11(b). If the difference of two vertical
curve IDs is not 1, omit computing the phase.

2) Calculate the correlation z at the pixel (x, y) between the
difference of the cost functions C(f,,) —C(f,) and a 1D
complex Gabor function g, ., (x—x) of the wavelength
L(z), where the line position on the left side is .

3) If |z| > & at the pixel (z,y), the phase 0(z,y) is
given by 6(x,y) = arctan(Rz/Sz). The phase ¢ that
corresponds to the pixel (x,y) in the camera image is
computed by ¢ = I(k + 0(x,y)/27), where k is the
curve ID of the reference vertical line, and [ is the gap

If the correspondence of grid points between frames
is given, the graph becomes three dimensional one. The d(p, q)
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Cost

Horizontal axis k K

()

Fig. 11.

(b)

(a) An example of the cost functions Cj,(P) (solid line) and C,(IN) (dotted line) computed in Sec.IV-A for vertical lines. They become periodic

functions that depend on the shape. (b) The gap L(x) between detected curves is used for computing phase if the difference of two vertical curve IDs, k and

k', is 1.

of vertical curves in the coordinate of projector image.
The complex Gabor function g(, ,(t) is defined as follows:

(t) —e ;tz e —2mit
g(:c,y) - Xp 20_2 Xp L(x) )

where 0 = 2L(z) and the magnitude is normalized so that
>+ 9(t) = 1 after discretization. If the variation of the cost
function is small, which means that the estimated phase is
not reliable, the proposed method computes the phase only
for the absolute value of z is larger than the threshold k. At
the occluding boundary, the shape should not be interpolated.
The occlusion can be detected by checking if the difference of
curve IDs is 1. For the points that are not between two curves,
the phase is extrapolated by using the closest curve and L(x).

By considering the connection of curves, the periodic curve
ID can be unwrapped in each connected component. Since the
phase of each pixel can be also unwrapped, it becomes the
corresponding coordinate of the projector of the pixel with a
common unknown shift. Once the unknown shift is estimated
by the method described in Sec.III-C, the correspondence be-
tween a camera pixel and a projector line is determined. Then,
the 3D points for all pixels are calculated by triangulation.

Fig. 7(e) is the result of computing the phase from the cost
function. The color from red to yellow corresponds to the
phase from O to 27. The green pixels represent negative phases
to extrapolate the left side of curves.

(18)

V. EXPERIMENTS
A. Comparison between color coding methods

To confirm the advantages of our method, we reconstructed
an object with texture. In the proposed method, de Bruijn se-
quence of two colors (blue and green) with the code length of
three was used in vertical and horizontal lines. For comparison,
color coding method using only vertical color stripes [36] was
also applied to the objects, in which the color pattern was
constructed based on de Bruijn sequence.

The result is shown in Fig. 12. In the color coding method,
3D reconstruction was successfully achieved by using both
the geometrical information obtained from the grid points
and the coded IDs, even if ambiguity remains in the IDs for
deciding unique correspondences. Moreover, in the proposed
method, extraction of edges was less affected by the textures

because of using only two colors. Standard deviation of the
proposed method and the color coding method was 2.09mm
and 4.15mm, respectively. Note that for calculating the stan-
dard deviation, manual process to remove many outliers was
required for the color coding method, whereas nothing was
required for our method. From the results, we can confirm
that the proposed method provides more dense and stable
reconstruction than the previous color coding method.

Fig.13 is another example of the 3D reconstruction of a
textured object. Even though the colors of curves in the camera
image are affected by the color checker pattern, the relative
difference of the two colors can be distinguishable and the
proposed method succeeded to detect the periodic curve IDs
as shown in (c).

B. Removing wrong connection by using color codes

We estimated the effect of removing wrong connections
by using color codes. The results of 3D reconstruction
with/without removing wrong connections are compared for
a scene shown in Fig.7. Since the image is captured at the
moment that a balloon is bursting, the detected vertical curves
are wrongly connected near the boundary between the front
and back surface. Fig.14(a) and (b) show the result without
removing wrong connections. In this case, the front and back
surfaces of a balloon are connected. With our technique, such
wrong connections are successfully cut and the shapes of the
front and back surfaces are separately reconstructed as shown
in Fig.14(c) and (d).

C. Reconstruction with multiple projectors

Next, we tested the 3D reconstruction with multiple pro-
jectors. In the experiments, we first used CG input images
generated with a ray tracing software. We used the model of
bunny from Stanford University [37] as the 3D object.

Three projectors were located at the right, left and upper
sides of a camera. Fig.15(a),(b) and (c) show the input images
with one, two and three projectors, respectively. The distances
between the camera and projectors were 1.0, and the distance
from the camera to the object was about 3.2. The field of view
of the camera was about 40 degrees. The one of the projectors
were shared for all the cases, which is used for the comparison
of correspondence.
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Fig. 12.

Comparison between color coding method [36] and our method: (a) target object, (b) captured scene with color coding method, (c) detect curves

(d)(e) reconstructed shape, (f) captured scene with our method, (g) detected curves, and (h)(i) reconstructed shape.

Fig. 13. The curve IDs are determined as shown in (c)
by the proposed method from the captured image (b) of the
color checker pattern shown in (a). The dense shape (d) is
reconstructed by calculating the phase between curves.

(a) (b)

The object is illuminated by (a) one, (b) two and (c) three projectors, respectively. In (a), a grid pattern is illuminated from the projector, whereas
in (b) and (c), each of the projectors illuminates a parallel-line pattern. The dense shape is reconstructed as shown in (d). (e) shows the difference between
the computed coordinate and the ground truth. The bright pixels indicate large errors.

Fig. 15.

We first evaluated the accuracy of correspondence between
the camera and the projector obtained by calculating dense
phase. The estimated correspondence for each pixel was
compared with the ground truth. Fig.15(e) shows the difference
between the computed coordinate and the ground truth. The
bright pixels indicate large errors. The pixels at the occluding
boundary had large errors, too. While the root-mean-square
(RMS) error of the projector coordinate was 1.02 pixels if
all pixels were used, it became 0.175 pixels if the boundary
pixels were omitted from the computation. In the latter part of
this section, the boundary pixels are omitted from calculating
errors. This result shows that the proposed method can find

(c) (d)

Fig. 14. (a) and (b) show the result without removing wrong connections. In this case,
the front and back surfaces of a balloon are regarded as a connected surface. (c) and
(d) show the result reconstructed after cutting curve between the grid points of different
curve IDs. (a) and (c) are the front views while (b) and (d) are the side views.

(d)

the correspondence in subpixel accuracy by interpolating the
phase if the surface normal is directed toward the camera and
the projector enough to calculate the color code.

The error of correspondence is caused by two reasons. The
first one is the error of calibration. We tested the proposed
method with the intrinsic and extrinsic parameters that were
estimated under imperfect correspondence; the calibration
of the system was simulated by adding random noises to
the point correspondence that was used for calibration. The
correspondences and depths were calculated by changing the
standard deviation of the noise. Fig.16 shows the RMS errors
of correspondence and depth compared with the ground truth,
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Fig. 16.  The proposed method is tested with the intrinsic and extrinsic
parameters that are estimated by using noisy correspondence. The calibration of
the system is simulated by adding random noises to the point correspondence
that is used for calibration. The errors are calculated by changing the standard
deviation of noise: (a) the correspondences between camera and projector and
(b) depths from the camera.

which are the averages of 100 trials for each standard deviation
of the noise. The errors of the results are nearly linear if
the standard deviation of the noise is less than two pixels.
The three cases do not have large difference with respect
to the depth error as shown in Fig.16(b), while the case
of one projector shows the best result with respect to the
correspondence error as shown in Fig.16(a).

The second reason is the error of curve detection and color
estimation. The calculated phase can shift because of the
wrong detection. We tested the proposed method by adding
errors to the calculated phase. The correspondences and depths
are calculated by changing the standard deviation of the errors.
Fig.17 shows the RMS errors of correspondence and depth
compared with the ground truth, which are the averages of
100 trials for each standard deviation of error. If the error of
curve detection is larger than three pixels, the error of the case
of one projector increases drastically because the offsets of
cycles are wrongly estimated. The errors of the cases of two
and three projectors are nearly linear even with large error
of curve detection. The difference between the cases of one
projector and the others is that the axes of pattern planes are
placed at skew position in the case of two projectors, while
they intersect each other in the case of one projector. As
discussed in [38], the robustness of linear solution is improved
if the axes are at skew position, which is the reason why the
case of two projectors gave better results. The result of three
projectors shows slightly better than the case of two projectors.
The reason is considered that redundant information is given
to solve Eq.(7), (8), and (9) in this case.

Another advantage of using multiple projectors is to reduce
occlusion. The proposed method with multiple projectors
basically needs two or more projectors to illuminate a part of
surface for reconstruction. Even where it is illuminated only
by a projector, it can be reconstructed if it is connected to
the part illuminated by two or more projectors. Fig.18 shows
the result of capturing two balls by using two projectors.
The vertical lines are projected from the left side of the
camera, while horizontal lines are projected from the right
side. Fig.18(b) is the reconstructed result. The white area can
be reconstructed by the patterns of both projectors, while the
red and green areas can be recontructed only by the pattern
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Fig. 17. The proposed method is tested by adding errors to the calculated phase,
which simulates the error of curve detection and color estimation. The errors are
calculated by changing the standard deviation of noise: (a) the correspondences

between camera and projector and (b) depths from the camera.

(b)

Fig. 18. (a) an input image illuminated by two projectors. (b) the recon-
structed result. The white area can be reconstructed by the patterns of both
projectors, while the red and green areas can be recontructed only by the
pattern of one of the projectors.

(b)

Fig. 19. A cube-shaped object is measured by the proposed method and
Kinect. The size of the cube was 0.2m square and the distance from the
camera was about 1.0m. (a) and (b) are the input image and the reconstructed
result by the proposed method. (c) is the result of Kinect.

of one of projectors. The result with two projectors is 11%
larger than that with the right projector, and 20% larger than
that with the left projector.

D. Comparison of accuracy

Next, the accuracy of the proposed method was evaluated
by capturing a cube-shaped object as shown in Fig.19(a). The
size of the cube was 0.2m square and the distance from the
camera was about 1.0m. The distance between the camera and
the projector was about 0.36m. Each face of the reconstructed
cube was fit to a plane to calculate RMSE. The reconstructed
result by the proposed method is Fig.19(b). The average of
RMSE of two planes was 0.635mm. Fig.19(c) is the result
obtained by Microsoft Kinect, of which the RMSE of fitting
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a plane to each face is 1.657mm. The error of the proposed
method was smaller than Kinect. One of the reasons is that
the baseline of the proposed method is wider than Kinect,
which is approximately 0.075m. Since the proposed method
is a line-based method, it is an advantage that it can find
correspondences robustly even if a large image distortion
occurs by a wide baseline.

E. Batch reconstruction of multiple frames

Next, we tested batch reconstruction of multiple frames with
temporal connectivity given by matching grid points between
adjacent frames. It is effective if spatial connectivity in a
single frame is not sufficient to remove the ambiguity of
correspondence. Fig.20 shows such a situation. The figures of
the top row are four frames in the image sequence where many
balls are falling down. The bottom row shows the results of 3D
reconstruction without using temporal connectivity between
adjacent frames. Since the balls are small in each frame, some
of the balls in red circles are reconstructed at wrong positions
due to the wrong estimation of cycles. In this experiment, six
out of 76 frames have wrong estimation in the case of frame-
by-frame reconstruction. In the middle row, all the frames are
correctly reconstructed by batch processing of 76 frames.

F. 3D reconstruction of high frame-rate video

Finally, we conducted a dense 3D shape reconstruction us-
ing an object which changes its shape at the moment to prove
the ability of high frame-rate scanning. As mentioned in the
introduction, one of the advantages of one-shot 3D scanning
is suitable to capture the shape of objects in extremely fast
motion.

The first example is a bursting balloon with 1000
frames/second (FPS) and shutter speed 1/20000 second. Fig.21
shows the moment of the bursting balloon. While it bursted
so quickly and only a several frames can be captured during
the burst, the proposed method successfully generated the 3D
shape for each frame. The size of an input image is 512 x 512
pixels, and the average time to generate the shape for a frame
is 1.33 seconds. The computational cost is mainly depends
on the number of grid lines projected onto the object. The
projector was a 3-LCD XGA projector and an Intel Core 2
Duo 3.16GHz processor was used to compute the shapes.

Next, the shape of water splash, deforming cloth, and
deforming face are captured with our method. The image
sequences were captured at 60-2000 FPS by using a high
speed camera. The objects are illuminated by a single pro-
jector. The image sizes of the camera and the projector are
1024 x 1024 and 1024 x 768 pixels, respectively. Fig.22 shows
the four frames of the input images and results from the three
sequences. In the case of the water splash (a), the water was
white and opaque and the pattern was reflected on its surface.
The proposed method succeeded to capture the shape of the
water splash and waves caused by the ball. In the case of
the deforming cloth (b), the detailed shape, such as waves
and creases caused by a hit of a ball, was captured. In the
case of the face (c), the cheek was hit by a hand, and we can
observe the deformation from the captured shape. The average

computational time was 5.00, 6.15, and 3.15 seconds for each
frame by Intel Xeon 2.4GHz processor.

VI. CONCLUSION

In this paper, a one-shot active stereo techniques that can
reconstruct dense 3D shapes are proposed. The proposed
techniques realized 3D reconstruction by using dense grid
patterns. For a solution, we re-formulated the problem of
3D reconstruction from a grid pattern and introduced two
approaches, such as coplanarity based method and epipolar
based method; both efficiently reconstruct the shape from
grid pattern. We also introduced spatio-temporal constraint,
by which the batch reconstruction of multiple frames is
realized. Since the batch reconstruction reduces the number
of parameters to be estimated, the shapes are reconstructed
robustly even if the spatial connectivity is insufficient. We
also proposed an efficient method to realize stable detection
of dense curves of the grid pattern by classifying pixels based
on belief propagation. Further, de Bruijn sequence using just
two colors was proposed. The line IDs labeled by de Bruijn
sequence are not only effective to remove the wrong connec-
tion of grid lines, but also used to interpolate all the pixels
between lines for dense reconstruction. In the experiments,
we showed the effectiveness of detecting grid pattern and the
accuracy and robustness of reconstruction. Finally, the dense
reconstruction of fast moving objects in a high frame-rate
video was presented. In future work, we plan to utilize the
reconstructed shapes of high frame-rate video for analyzing
the deformable motion of objects.
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failed to reconstruct some of the balls, which are in red circles.
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Fig. 22.

(b) Deforming cloth

deforming cloth hit by a ball, and (c) deforming face hit by a hand.

Frame 24 Frame 22 Frame 9

Frame 26

The top row are the four frames in the image sequence where Fig. 21. 3D reconstruction of a bursting balloon. The numbers are the frame
many balls are falling down. In the middle row, the 3D shapes of all balls
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frames, while the results reconstructed frame by frame without the constraint

numbers in the image sequence. The size of an input image is 512 x 512 pixels.

(c) Face

The results of acquiring the shape of moving/deforming objects with a high speed camera and a projector: (a) water splash caused by a ball, (b)
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