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Recently, the mounting of on-vehicle camera is increasing to general cars. Because of this, some users start
to upload the on-vehicle videos to web. So that, a number of on-vehicle videos are available nowadays. In
this paper, in order to localize car, we propose the efficient matching method for such on-vehicle videos using
Temporal Height Image (THI), Affine SIFT and Bag of Feature. THI retains information of relative building
height from temporal image sequence. Then we extract robust features from the THI by using Affine SIFT.
We realize efficient matching by expressing their features using Bag of features. We conducted experiments
to show the efficiency of the proposed method by real image sequences of the city.
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1 INTRODUCTION
In recent years, the urban space representation and 3D

reconstruction on computer have been extensively reported.
These research have attracted attentions from the view-
point of landscape simulation and disaster prevention. How-
ever, in most case, since the data is acquired by a special
vehicle, it is not reasonable to expect the map to be fre-
quently updated.

On the other hand, installation of on-vehicle cameras
are significantly increasing for the purpose of recording
car accidents and/or intelligent driving support systems.
With the spread of on-vehicle cameras for general cars,
some drivers start to upload their on-vehicle videos to the
web to share their driving experience and the number of
those videos are surely increasing. As the result, a num-
ber of on-vehicle videos are available nowadays. These
videos have potential to use for frequently updating of the
map. However, there is one critical issue to use those
database for analysis or ITS applications,i.e., almost of
these data does not have geographical information like
GPS. Therefore, in this research, we propose the method
to identify the location of on-vehicle videos which were
captured by the anonymous users.

In the proposed method, we identify the the position
where the data was acquired using an approach based on
image matching with image database. The method con-
sists of two parts, the first is a learning part using video
data which already have geographical information and the
second is a video search part to find the video which in-
cludes the same scene of our target video from the database.

At the learning part, we first make a special data struc-
ture, called Temporal Height Image (THI) [16], which ef-
ficiently represents a spatio-temporal information of our
target, and then, extract a feature from the data which is
invariant to speed and directional change of the car. At

the video search part, we use the Bag of Feature (BoF) [6]
which is known to realize a robust and efficient search
from huge database.

For the sake of localizing videos by using video re-
trieval method, videos associated with geographic infor-
mation are required. To obtain such data, we can assume
three methods: taking video data by probe car, adding ge-
ographic information manually, or using ready-made city
model such as Google Earth [1] or Bing maps [2]. The for-
mer two methods are able to obtain real video, however it
is difficult to prepare database which has large scale re-
gion. On the other hand, the last one can generate large
scale database, but errors of 3D city model may degrade
matching accuracy.

We also propose a method to generate database from
each input data of above three. We evaluated the method
by matching videos downloaded from the Internet with
these 3 databases. The results show the effectiveness of
our method.

There are mainly two contribution in the paper. First,
we propose the method which can localize the video data
captured by car mounted camera without using any other
sensor information, such as Gyro sensor nor GPS. Al-
though several techniques have been proposed for the same
purpose, our technique is robust to illumination and cam-
era direction change. Second, we conducted several ex-
periments to show the effectiveness and the limitation of
the proposed method. By using our video localization
technique, accurate car position can be acquired from the
car mounted video camera, even if the car is running in
the area where GPS information cannot be acquired; such
area is commonly exist in urban districts with high build-
ings.

The rest of this paper is structured as follows. In Sec-
tion 2, related works including vision-based localization



in robotics and image matching of outdoor scene in com-
puter vision are described in detail. The overview algo-
rithm of the proposed method is described in Section 3.
Then the proposed feature extraction method and the video
retrieval method are described in Section 4. The experi-
mental results, including the effectiveness of our THI cor-
rection and localization results by using videos taken from
various on-vehicle cameras and videos generated from Google
Earth, are shown in Section 5. Finally, we conclude the
paper in Section 6.

2 RELATED WORKS
Google Street view [9] provides images gathered by

people, cars and bicyclists equipped with omni-directional
cameras and GPS. Google Earth [1] and Bing Maps for
Enterprise [2] provide 3D information of the city recon-
structed by images taken from the sky. As these methods
require special equipments for data, therefore areas whose
data are updated frequently are limited only in urban ar-
eas.

In the field of Robotics, many methods called vision-
based localization which estimates robot positions by us-
ing images have been proposed. Commins and Newman
proposed a method to localize the robot by the BoF frame
work [7]. The method can deal with a large scale envi-
ronment. To realize large scale localization, they used
SIFT for the feature points to match images. SIFT is
robust to both luminosity and geometry change to some
extent. However, for outdoor environments, since these
changes are relatively large due to driving lane, camera
direction, weather condition, and so on, the robustness of
the feature matching becomes unstable. Such a problem
generally happens to vehicle position estimation method
using single image. To deal with such variations, Ya-
mamoto proposed a method which matches regions repre-
senting building, trees and so on [12]. The region extrac-
tion method is based on support vector machine (SVM),
so the method is robust for such appearance variations.
However, the matching by an image pair is generally un-
stable. Therefore they apply Markov localization frame
work to deal with this matching ambiguity, but not using
temporal image sequences.

The method proposed by Ono, reconstructs 3D city mod-
els by images taken by multiple probe cars [15]. In the
method, epipolar plane image (EPI) and the THI; both
are kinds of temporal image sequence; are used to esti-
mate the location of a probe car. Continuous DP matching
is conducted to evaluate matching scores, therefore, the
method can estimate the location robustly despite the vari-
ation of car speed. However, the computation time of the
DP matching rapidly increases as the size of database in-
creases. Moreover, the variations of appearance caused by
weather and seasons degrade the estimation results, which
are acquired by texture information on EPI. Another re-
search of self-localization using on-vehicle camera is pro-
posed by Kyutokuet al. [10]. In the method, to estimate
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Figure 2: Construction step of THI.

vehicle position, a video is captured along the predefined
route in advance and compare the image captured by the
target vehicle. Since SIFT is used as a feature, accuracy
may be affected by geometric variance caused by differ-
ence of lane and/or camera direction.

Other researches which estimate the camera position
in an urban scene have been proposed. Baatzet al. [5]
proposed a localization method for smart phones. Their
method deals with images taken by different cameras. In
this method, Vanishing Point (VP) is extracted from the
obtained image then walls of building in the image are
projected onto the same plane to reduce variations of ap-
pearance caused by the view points. After the conversion,
similar images are searched by using BoF algorithm.

Nodaet al. [14] proposed a similar method. In their
method, an obtained image is matched with images taken
from the sky, which contain large road regions, so they
convert the obtained image to a bird-eye view image by
detecting road regions in the image. Sivicet al. [17] pro-
posed a method for the same purpose. In their method
SIFT features are extracted from the obtained image, then
they search for the similar image by the method which is
an extension of the document search to the image search.
However, these methods are based on single image match-
ing, and not by using temporal information.

3 OVERVIEW OF THE TECHNIQUE
Our purpose is to find the actual place of the scene

which was captured by on-vehicle video camera without
using any special sensors such as GPS. The method con-



sists of two phases, the first one is a learning phase and the
other is a searching phase as shown in Fig. 1. The learn-
ing phase consists of five steps. In step L-1, video data
which have geographic information are used as an input.
The data include the videos which are captured by a probe
car. Since an omni-directional camera is common for a
probe car,i.e., Google car for Street-view, we also assume
that we have a certain amount of omni-directional videos
for learning phase. Then, we construct THI (step L-2) and
extract features from THIs using A-SIFT [13](step L-3).
Since the number of features is too large, we apply BoF
which is known to be a typical solution for such a case to
make a compact representation of data (step L-4, L-5).

At searching phase, after the obtaining of vehicle mounted
video (step S-1), we apply the same step for the learning
phase (step S-2, S-3) and construct BoF vector (step S-4).
Once we get the vector, we search the similar vector from
the database to determine where the video was taken (step
S-5).

4 VIDEO LOCALIZATION BASED ON VIDEO SEARCH
4.1 Spatio-Temporal Data Structure

First, we construct the spatio-temporal data to extract
the feature which efficiently represents the scene captured
by on-vehicle video camera. For the purpose, we adopt
THI for a data structure. In the following, we describe
what THI is, how to construct it, and an extended method
to improve the quality of THI.

4.1.1 Construction of THI
Temporal Height Image (THI) is a spatio-temporal im-

age representing the height of buildings. Each pixel value
represents height of buildings of given video sequence.
The coordination of THI is same as other temporal im-
age representation such as epipolar plane image (EPI);
y indicates frame number of the video andx is same as
x-coordinate of the input video. Since, a pixel intensity
along a row of THI represents height information of the
corresponding frame by a gray scale value, THI repre-
sents the change of the height information of the build-
ings. Fig. 2 shows how to make a THI. First, a silhouette
of the buildings is detected by image processing, and then,
the heights of the buildings are estimated from the silhou-
ette. Then, the height information are converted to gray
scale value and a single row is constructed for each frame.
Finally, all the rows from consecutive frames are accumu-
lated to create THI.

4.1.2 Construction of THI from Omni-directional Im-
age

Although the proposed method is robust for the camera
speed and the driving lane, it cannot deal with the oppo-
site direction of the car motion, because appearances of
both THIs are totally different. Omni-directional camera
which can observe360◦ view surroundings can be a so-
lution for the problem. Since the omni-directional image
can be easily converted into a perspective image viewed

from the arbitrary camera position to any view direction,
two THIs for both car directions, one views forward and
the other views opposite, can be constructed. By using
those two THIs, one of them always matches to either di-
rection of the car motion.

4.1.3 Correction of THI
For construction of THI, the obtained video include sev-

eral obstacles, such as electric cables and clouds in the
sky.

To remove these obstacles, we use the method proposed
by Wang [16] to remove the electric cables in the sky.
The method is based on a median filter using a special
shape of kernel, such as 1*n, which has long and thin
shape. Although the noise removal process using the me-
dian filter efficiently works on cables, it cannot remove
large objects like clouds. For solution, Graph-Cut(GC) al-
gorithm [19][8] which can efficiently segment the scene
into a small number of elements, such as sky, wall of
buildings, trees and roads can be used. One problem of
the GC is that it is not easy to set an appropriate parameter
for general case,e.g., if we set a strong smoothness term,
small but important objects are all wiped out. On the other
hand, if we set a small smoothness term, small noises re-
main in the scene. Therefore, it is difficult to realize both
removing clouds and keeping thin, but important objects
in the scene, such as street lights; note that such an object
like street lights makes a T-junction in THI and is an im-
portant feature for similarity retrieval step. In our method,
we set a small smoothness term and apply the opening of
morphological filter for solution. With the method, some
parts of a thin object are removed by GC, but are recov-
ered in the next step.

Fig. 3 shows the cloud removing result. In the origi-
nal captured image (a), the complicated textures of clouds
are observed in a sky and simple edge detection cannot re-
move those clouds as shown in (b). However, after apply-
ing our method, the sky regions are segmented correctly
whereas street light is also kept in the scene as shown in
Fig. 3 (c). Fig. 4 shows THIs with and without the cloud
removing method, In Fig. 4(a) THI has many noises, how-
ever, those are all removed in Fig. 4(b).

When making the THI directly from the video, vibra-
tion of the car cause noise on THI. The typical solution
is to install a shock absorber between the camera and the
car. However, since we assume that the video is captured
by anonymous people and cannot expect to use such ab-
sorber for installation, we apply an image processing tech-
nique for solution. Because our target video is captured by
an on-vehicle camera which is usually toward the moving
direction, the video naturally includes a focus of expan-
sion (FOE) in the scene. Therefore, we use FOE to detect
a small vibration of the car. Since FOE is a point where
optical flows are come out, the point can be extracted as
the intersection point of flow vectors in the scene. Note
that it is known that the optical flow is robustly extracted



(a) Input image (b) Edge image (c) Graph cuts

Figure 3: Example image with cloud in the sky and removing
result.

(a) Before (b) After

Figure 4: Effect of removing clouds to make THI.

from videos, and thus, FOE can be stably detected. By
using the FOE, we can adjust the height of the building to
refine the THI.

To estimate FOE consistent to temporal direction, we
used a particle filter for FOE tracking in the paper. Al-
though estimation of FOE is almost correct, small vibra-
tion still occurs because of miss-matched optical flows or
wrong detection by surrounding cars. Those errors are
efficiently modified by the temporal filter, especially the
particle filter. In the method, each particle represents a po-
sition of FOE. If the line of an optical flow passes through
a particle, the likelihood of the particle increases. By max-
imizing the likelihood, temporally consistent FOE track-
ing is realized.

4.2 Creating a Database Using model
Since either gathering data with a probe car or retriev-

ing data from the Internet is not easily, a digital map could
be a promising solution. There are some differences be-
tween actual scene and digital maps, for example, street
lights, electric poles, and billboards are usually not exist-
ing in the digital maps as shown in Fig 5. (d) is sample
frame of the digital map and it reconstructs the THI (b).
(c) show the sample frame of the actual scene and it is
same position with (d). Despite such differences, we can
still confirm that the created THIs are globally similar to
real data. In addition, most of the digital map has no tex-
ture information, however, since we only use height infor-
mation, we can still utilize the most of them; this is one of
the strength of our method using THI.

Finally, this time we created THIs by each 400 frames.
If THI is too short, we cannot get enough distinguished
features. In addition, if it is too long, THIs are affected
by the noise. This time, we confirmed it experimentally

(a) THI (YouTube) (b) THI (Google Earth)

(c) Sample frame of (a) (d) Sample frame of (b)

Figure 5: difference between YouTube and Google Earth

that 400 frames is most appropriate. However, appropriate
length vary by velocity or shutter speed of camera.

4.3 Feature Extraction by Affine SIFT
Since THI uses only the height information of the build-

ings, THIs are not affected by the texture of the build-
ings. As a result, THIs are robust for appearance variation
caused by the weather or time of day. However, THIs have
some variations even if cameras take the same scene. The
variation is caused by mainly two reasons; one is mov-
ing speed of the camera and the other is the difference of
the driving lane. Due to this, another feature extraction
method is needed.

In THI, the camera speed appears as the incline of the
building’s border. Thus it can be handled by 2D homo-
graphic transformation. The driving lane appears as pixel
brightness since the appearance of the building height changes
with the distance between the camera and the building.
Thus it can be handled by the illumination change. There-
fore, we use Affine SIFT [13], which is a feature descrip-
tor that can handle both the illumination change and the
affine transformation.

Fig. 6 shows the results of extraction by Affine SIFT
features from THIs. In the figures, three THIs and a real
scene corresponding to the THI are shown. Points on each
THI represent extracted positions of the Affine SIFT fea-
tures. Since an original number of points is too large for
subsequent processes, we conduct clustering by k-means
algorithm for aggregation. Points belonging to the same
cluster are drawn by the same color in the figures. We can
see that the most feature points extracted by Affine SIFT
appear in the borders between buildings (the areas where
intensity difference is large) and near thin structures such
as street lamps in the scene (near the areas where thin lines
exist). The intersection of the boundaries of those two ar-
eas is called T-junction.



(a) THI1 (b) THI2

(c) THI3 (d) Sample frame of the scene (c)

Figure 6: Example of extracted features using Affine SIFT on
THI.

W1 = 0.6

W2 = 0.0

W3 = 0.0

W4 = 0.2

inImage

W1 = 0.0

W2 = 0.1

W3 = 0.0

W4 = 0.1

db1

W1 = 0.5

W2 = 0.0

W3 = 0.0

W4 = 0.1

db2

W1 = 0.0

W2 = 0.8

W3 = 0.4

W4 = 0.0

db3

0.02 0.32 0.0

W1 = 0.6

W2 = 0.0

W3 = 0.0

W4 = 0.2

inImage

W1 = 0.0

W2 = 0.1

W3 = 0.0

W4 = 0.1

db1

W1 = 0.5

W2 = 0.0

W3 = 0.0

W4 = 0.1

db2

W1 = 0.0

W2 = 0.8

W3 = 0.4

W4 = 0.0

db3

0.02 0.32 0.0

Figure 7: Image retrieval by using BoF

4.4 Similarity Scene Detection using BoF
For image retrieval, we use Bag of Feature (BoF) [6],

which is a well-known image retrieval method for web
images. In the BoF, each image is represented by the
histogram of typical features in the image called visual
words, and then, the similarity search of the image is done
by the histogram matching between the images in the database
and the input image. We apply the BoF to search a similar
THI, then the location of input video is determined by the
search result.

For implementation, BoF needs clustering of the feature
vectors. We use hierarchical k-means algorithm for clus-
tering. Then, we use the center from each cluster to decide
delegate feature, called visual words. Since the number of
clusters is equal to the number of visual words, the number
is an important parameter of BoF’s recognition. Although
the large number of visual words is preferable for robust
recognition, it requires a large memory and computational
cost. For the solution, we randomly sample the features. If
the ratio of the sampled feature is too low, the recognition
results may be degraded. In our method, we set the sam-
pling ratio to be20% by evaluating the real data; details
are described in Section 5.3.

After generating visual words, a normalized histogram
of the visual words is calculated for each THI. We apply
approximate nearest neighbor (ANN) [11] for calculation.
For matching, we usetf-idf weighting method [18]. The
weight of a visual wordvi in an imagej, is denoted as

Figure 8: Our probe car with an omni-directional camera.
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Figure 9: Recall and precision rate using Affine SIFT and
SURF.

wij , is calculated as follows:

wij =
tfij∑
i tfij

log
N

dfij
, (1)

wheretfij represents the histogram value ofvi in the im-
agej, dfj represents the number of images including fea-
tures belonging tovi, andN represents total number of
images. Thewij is the bin value of the histogram.

For retrieval when a query video sequence is given, the
video is converted into THI, Affine SIFT features are ex-
tracted from the THI, and the histogram of the visual words
weights is calculated. Then similarity score is calculated
by the inner product of this histogram pair. By calculat-
ing all the similarity between the database, the video se-
quence which has the highest similarity score is selected
as the corresponding scene.

5 EXPERIMENTS AND EVALUATIONS
We conducted experiments to confirm the effectiveness

of the method. We captured the video using the probe car
as shown in Fig. 8 (right). The car was equipped with
the omni-directional camera as shown in Fig. 8 (left) and
could capture 360 degree environment with 30 fps. We
also searched the video with keyword “Tokyo car mounted
video” from YouTube [3] and downloaded several car-
mounted videos as the input. Synthetic input data gen-
erated from Google Earth were also used.

In this experiment we manually judged the accuracy of
the method by comparing the video sequences. If both
query and result THIs contain the images which capture
the same position, it is considered correct.



(a) Input THI
(c) Search result from
DB using A-SIFT
(Success)

(e) Search result from
DB using SURF (fail-
ure)

(b) Sample frame of
the scene (a)

(f) Sample frame of
the scene (e)

(d) Sample frame of
the scene (c)

Figure 10: Example of input and search results using Affine
SIFT and SURF.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

R

e

c

a

l

l

without

correction

with FOE

correction

Figure 11: Effect of THI refinement using extracted FOE.

5.1 Comparison between Affine-SIFT and SURF
As explained in the Sec. 4.3, THIs are always distorted

by affine transformation at each video. Affine SIFT for
feature detection is our solution. To confirm the effec-
tiveness of using Affine SIFT, we compare the result with
SURF which cannot cope with affine transformation.

Fig. 9 shows the recall and precision rate of both meth-
ods. We can clearly see that the results using Affine SIFT
are always better than thats of SURF. The left column of
Fig. 10 left column shows an example of an input THI for
query (a), result of Affine SIFT (c) and result of SURF (e).
With the figure, although the input THI and the searched
THI with Affine SIFT are not globally similar, their lo-
cal features look similar and this is the reason why correct
THI was selected with our method. On the other hand,
wrong THI was searched with SURF approach where ap-
pearance of THI does not look like the input. The right
column of Fig. 10 right column shows the example frames
of each scene. We can confirm that the same scene of in-
put (b) is extracted by using our Affine SIFT in (d) even if
the camera and the position of the car are totally different.

5.2 Effect with the Correction of THI
To confirm the effectiveness of our THI correction us-

ing FOE explained in Sec. 4.1.3, we compared the result
with and without THI correction. Fig. 11 shows the re-
call and precision rate of both methods. We can clearly
see that the results with THI correction have improved the
results.
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5.3 Effect of the Number of Features on BoF
We use BoF for recognition part. Since BoF is based on

the idea that a large number of simple features has a good
potential for recognition, the number of features is an im-
portant factor to define the ability of the method. Since
clustering technique, which basically high computational
cost, is required in the process of BoF, it is not easy to
increase the number of feature points simply. Therefore,
we tested the method with respect to the number of the
features on BoF with the following two approaches. (1):
We randomly sample the feature points from every THI
to reduce the number of feature points. (2): We reduce
the number of visual words, but do not change the number
of the feature points. The purpose of the second evalua-
tion is to check the effect when a bin size of histogram is
enlarged; large bin size can drastically reduce the compu-
tational cost for clustering.

Fig. 12 shows the effect of (1). We can clearly see that
drastic reduction severely degrade the results, however, if
there is a certain amount of data, quality of results does
not change. Fig. 13 shows the effect of (2). We can see
that the number of visual words does not affect the quality
of the result much. From those two results, it suggests
that it is possible to reduce the number of both feature
points and visual words by some threshold to make the
low computational cost keeping the quality of the result.



5.4 Effect of using Omni-Directional Camera for the
Probe Car

The video captured by the probe car is expected to im-
prove the results. In the paper, we propose a method to
use an omni-directional camera for the probe car to fur-
ther improve the results. In the experiment, we used
Ladybug camera [4] for capturing. Ladybug have five
separated cameras. However, we created THIs not from
each camera, but from the panoramic image which is cre-
ated by integrating the five camera images. In our method,
we made two THIs for the direction of car moving direc-
tion and its opposite. If two of the five cameras’ direc-
tion are the same as the desired direction, it is efficient
to use the camera images. However, in reality, the direc-
tion of the installation of the Ladybug camera cannot be
set to the same direction every time, we cut out images
from the panoramic image. To confirm the effectiveness
of our method, we compared the results of 2 databases
constructed by the omni-directional video; one using only
one converted perspective video (DB1) and the other us-
ing both the perspective and the opposite (DB2). Three
query videos were downloaded from YouTube. All videos
captured the same scene from the same route, but their
directions are different.

Fig. 17 shows the recall and precision rate of the results.
In Fig. 17, “Perspective Image” denotes the results using
the DB1, and “omni-directional image” denotes those us-
ing the DB2. Since the shapes of THI created from the
videos capturing the same scene along the same road but
from opposite directions are totally different, it is almost
impossible to find correct match between them. However,
it is drastically improved by adding the video captured by
omni-directional camera as shown Fig. 17. Fig. 14 shows
example THIs and scenes of this experiment. Fig. 14(a)
shows a query THI, and Fig. 14(c) is an example frame of
the sequence constructing (a). Fig. 14(b) is the matched
THI with (a) in DB2, and Fig. 14(d) is an example frame
of (b). Fig. 14(e) is the THI of same scene as (b) but using
opposite directional video, and Fig. 14(g) is an example
frame of (e). Fig. 14(f) is matched THI with (a) in DB1,
and Fig. 14(h) is example frame of (f).

The right column of Fig. 14 shows the example frames
extracted from each THI. We can confirm that the same
scene of input (c) was successfully extracted from the omni-
directional camera (d) and ordinary camera (h) which was
captured from the car moving toward the opposite direc-
tion.

5.5 Comparison between learning data set
First, we conducted the experiment to compare the three

data sets for learning. We used 30 places for learning from
each data sets; from eight video sequences downloaded
from YouTube, two routes captured by omni-directional
camera and synthetic data created by Google Earth. For
test, we selected 10 videos with different places which are
included in learning database for query and got ordered

(a) Input THI created by
YouTube video

(b) Search result of THI
from Omni-directional cam-
era (Same direction as the in-
put)

(c) Sample frame of the
scene (a)

(d) Sample frame of the
scene (b)

(e) THI of Omni-directional
camera with the same frame
of (b), but opposite direction

(f) Search result THI corre-
sponding to (e)

(g) Sample frame of the
scene (e)

(h) Sample frame of the
scene (f)

Figure 14: Since direction of the car of (a) and (f) is op-
posite, THI’s appearances are totally different and cannot
be searched directly. However, using omni-directional cam-
era, those two THIs are successfully connected. As the same
building is depicted by red circles in all frames, we can con-
firm that all the images are capturing the same scene.

answers from the system. Fig 15 shows the example result
using Google Earth for learning database. In the figure,
we can find apparent noises in the input THI, correct THI
is selected. Fig 16 shows precision rate for each data set.
As the results, we found that YouTube is the best among
three data types.

The reason of the different performance in precision
rate can be explained as follows. In Google Earth, small
details are not appear in the scene, and thus, local feature
of THI is different from real data. In addition, camera is
positioned too close to the ground, hence, usually camera
is placed near the roof of the car. Those bad conditions
make the low rate. About omni-directional camera, we
put the camera on a special tripod on the roof and it also
significantly change the view from the query data. Based
on the fact, although the quality of YouTube data is not
high, the results indicate that it is promising to use it as a
learning data.

5.6 Large Database Test for Scalability Evaluation
Finally, we carried out the experiment to verify the scal-

ability of our method by changing the size of database.
We used ten video sequences downloaded from YouTube.



(a) Input THI (b) Search result from DB

(c) Sample frame of (a) (d) Sample frame of (b)

Figure 15: Example of input and search results using Google
Earth as the learning database. We can find the same build-
ing in both (c) and (d).
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Figure 16: Precision rate for each database. Since the system
returns the ordered results of estimated places, topn results
are checked to calculate the precision rate. Therefore, hori-
zontal axis one means that only top ranked result is checked
whether the correct place is estimated or not. For YouTube
case, the correct answer must be included in top five results.

Fig. 18 shows the recall and precision rate of each experi-
ment changing a number of routes from two to ten. We can
see that even if we increase the database size, recall and
precision rate keep almost the same accuracy with similar
tendency, and thus, we can expect that our method prop-
erly works with larger databases.

6 CONCLUSION and FUTURE WORK
In the paper, we proposed a method to realize the match-

ing of videos which capture the same scene from car-mounted
cameras without using any sensors, such as GPS. In order
to achieve the robust matching with enough scalability,
our method uses THI and Affine SIFT for feature detec-
tion and BoF for search. In the experiments, we confirmed
effectiveness of our method by using real data that were
downloaded from YouTube and captured by the probe car.
Further, we crated the database using Google Earth. We
can apply our method for the position estimation in a place
where GPS information cannot be acquired. In addition,
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Figure 17: Effect on using omni directional camera.
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Figure 18: Effect on changing the database size.

our method can be used to localize the video without any
other information; such video is frequently found in In-
ternet, e.g., YouTube. In the future, we plan to use
larger database downloaded from Internet. We would like
to connect them together to construct a large and dense
image database over the world.
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