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Abstract

The central projection model commonly used to model
cameras as well as projectors, results in similar advan-
tages and disadvantages in both types of system. Consid-
ering the case of active stereo systems using a projector
and camera setup, a central projection model creates sev-
eral problems; among them, narrow depth range and ne-
cessity of wide baseline are crucial. In the paper, we solve
the problems by introducing a light field projector, which
can project a depth-dependent pattern. The light field pro-
jector is realized by attaching a coded aperture with a high
frequency mask in front of the lens of the video projector,
which also projects a high frequency pattern. Because the
light field projector cannot be approximated by a thin lens
model and a precise calibration method is not established
yet, an image-based approach is proposed to apply a stereo
technique to the system. Although image-based techniques
usually require a large database and often imply heavy com-
putational costs, we propose a hierarchical approach and a
feature-based search for solution. In the experiments, it is
confirmed that our method can accurately recover the dense
shape of curved and textured objects for a wide range of
depths from a single captured image.

1. Introduction

One-shot active scanning systems for capturing dynamic
scenes have been intensively investigated because of strong
demands in various fields, e.g., medical, robotics, games,
etc [13, 18]. Previous works mainly used light projectors
that radiate a structured light pattern from a single optical
center. An advantage of the model is that there is an inher-
ent duality between the geometrical properties of such pro-
jectors and the central projection model, e.g., a pinhole or
lens camera model, so that the projector in an active stereo
system can be formalized as an ‘inverse camera’ from a pas-
sive stereo system. Because of this analogy, the projected
pattern image can be treated as an image which is captured
by a virtual camera placed at the projector’s position, and

most passive stereo algorithms can be directly applied to the
image pair (i.e., the pattern image and the image captured
by the camera) for stereo reconstruction.

Recently, camera models other than central projection
models, i.e., non-central projection models, such as gener-
alized cameras or light-field cameras, have attracted many
researchers for their unique possibilities for specific pur-
poses [20, 22, 24, 17]. Especially light-field cameras, which
can capture a bundle of incoming light rays from different
directions and their intensities for each point of the image
plane, are widely studied and commercialized because of
their unprecedented capability of controlling the focus at
each pixel, which allows to create all-in-focus images [1].

Considering the geometric duality between a camera and
a projector, if a pattern projector with a non-central pro-
jection model is realized, patterns with novel properties,
such as depth-dependent and/or defocus-free projection, are
made possible. However, the naive method for constructing
a light-field projector in which a large number of projectors
are arranged together is known to have several problems,
such as optical design, costs and installation [9, 15].

To solve these issues, we propose a novel light field pro-
jector that consists of an off-the-shelf video projector with
a coded aperture mask attached. The system has the same
capability as a densely arranged array of projectors, and
the projected patterns change their appearance depending
on depth. Such nature is in contrast with a traditional cen-
tral projection system, where generated patterns are invari-
ant with respect to the depth. By making use of the depth-
dependent pattern, the camera and the projector are not re-
quired to be set up with a wide baseline, even with no base-
line, the depth can be still reconstructed. To leverage both
the depth-dependency of the projected pattern and the dis-
parities caused by the baseline between the camera and the
projector of our system, we propose a hybrid method fusing
light-field projection and active stereo technique.

As for the actual implementation of a light-field projec-
tor, we use lines or dots pattern for both an aperture and a
pattern for projection. As shown later, by using the pattern,
we can generate depth-dependent patterns without blurring
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out the high-frequency features. Such defocus free projec-
tion is one of our important advantage.

The contributions of the proposed method are:
1. A novel light field projector for defocus free projec-

tion is proposed and formalized by combining a coded
aperture mask to a standard video projector.

2. A robust depth-dependent high-frequency pattern is
designed both for the coded aperture mask as well as
the projector, which allows accurate shape recovery.

3. An image-based stereo algorithm which can solve the
challenging problem of calibrating the light field pro-
jector with complicated distortion characteristics is
proposed.

4. Alternative implementation of light field projector us-
ing diffractive optical elements (DOEs) is proposed.

2. Related works
In an active stereo system, the video projector is often

used as a light source to measure a wide area in a short
period of time. To realize fast and accurate acquisition, effi-
cient encoding methods are required and both temporal and
spatial approaches have been widely studied [19]. How-
ever, as described in the introduction, a light field projec-
tor, which cannot be modeled by central projection, has not
been utilized for active stereo systems yet. In terms of sys-
tem setup, several systems have been proposed [9, 15, 7].
Jurik et al. proposed a method using a large number of laser
projectors to construct a light field directly onto the human
retina [9]. Nagano et al. extended the technique to make
a 2D light field onto a predefined screen [15]. One se-
vere problem of these methods is that they require many
laser projectors for the system. Hirsch et al. proposed a
method using lenticular lenses inside the optics of a video
projector [7]. However, the resolution of the system tends
to be low and only a narrow angle of light field can be con-
structed. In this paper, we propose a mask based light field
projector. Although a similar idea has been already pro-
posed for light field cameras [23], it has not been applied to
projectors yet.

The configuration of the mask-based light field projector
is the same as a video projector with a coded aperture mask.
In terms of a video projector with a coded aperture mask,
this has been studied for various purposes, however, there
are no previous techniques using coded aperture for active
stereo (structured light). For example, Grosse et al. put a
coded aperture in the video projector to mitigate the defocus
effect at the projection [5]. Girod et al. used asymmetric
aperture to distinguish the forward and backward blur for
depth from defocus (DfD) [4]. Moreno-Noguer et al. put
a small circular aperture to realize DfD [16] and Kawasaki
et al. put a coded aperture on a video projector to improve
accuracy and density on DfD [10, 11]. However, for all
the techniques, depth range is limited because defocus blur
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Figure 1. Optical configuration.df is a depth of the focal plane.
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Figure 2. Actual optical system. (a) Setup with a short baseline
and (b) coded aperture installed on the projector lens.

increases rapidly. In contrast, since our system is designed
not to defocus, depth range is significantly broadened.

There have been several attempts to achieve the same
purpose and to enlarge the depth range in traditional active
stereo. The typical solution is to use an aerial laser light
source that has been shown to have successful results [13].
However, satisfying requirements of reconstruction density,
precision, safety and usability is still an open problem. Mo-
hit et al. proposed an active stereo system that decreases
the effect of defocus blur by projecting several special pat-
terns based on frequency analysis [6], however, the pat-
tern information degrades rapidly due to defocus, thus mak-
ing the expansion of possible depth range limited. Ma-
suyama et al., proposed a DfD method that projects multi-
ple patterns along the same optical axis with different focal
lengths, which can overcome the above stated problems [8].
However, the complexity of sharing the same optical axis
and the decreased contrast of multiple overlapping patterns
make practical construction difficult. Zhang et al. proposed
a method for projecting different patterns and successfully
reconstructed a high density depth map by analyzing the
captured defocused image set [25]. Achar et al. proposed
a method projecting a pattern with different foci to enlarge
the possible depth range [2]. However, those approaches re-
quire multiple images to be captured, which make the appli-
cation range limited. Our technique can recover the shape
from a single image without aforementioned problems.

3. 3D reconstruction using light field projector
3.1. System configuration and algorithm overview

The system setup is similar to the common active stereo
setup as shown in Fig. 1 and Fig. 2(a). A projector and a
camera are placed with a certain baseline, and a light pattern
is projected on the object. The difference from conventional
systems is the coded aperture placed over the projector lens
to realize a light field projection as shown in Fig. 2(b).

As shown in Fig. 2(a), the camera is placed near the pro-
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Figure 3. Overview of the reconstruction algorithm.This process
is executed for both coarse and fine steps.

jector lens so that the distance from the camera to the tar-
get becomes approximately the same as the distance from
the projector. Similar to the projector, the camera has its
own depth of field, however, we do not discuss the effect,
because camera defocus is typically much weaker than the
projector’s and it could be generally ignored. However, for
applying the technique to wider depth ranges, a solution will
be sought in our future research.

Fig.3 shows the algorithm overview. The technique
mainly consists of two parts: image database creation and
shape reconstruction. Note that the image database creation
is an offline process required only once. To this end, ref-
erence images are captured by changing the depth of a pla-
nar board with known position on which the specially de-
signed pattern is projected. The reason why we take an
image-based approach is explained in the Sec. 4.1. Since
the surface normals may not always be parallel to the view
direction, stereo matching will fail if the angle difference
between the normals on the object surface and reference
plane is large. We solve the problem by synthesizing slanted
planes from captured images as explained in Sec. 4.2.

During the shape reconstruction phase, we capture the
target object by projecting the same pattern and doing
stereo matching between the captured image and the image
database. To recover the shape of arbitrary objects, small
patches from the captured image are compared to the ref-
erence images, and the depth which gives the highest cor-
relation is selected. It should be noted that in principle any
pattern can be used in active stereo. Since our proposed pat-
tern consists of only vertical lines as described in Sec. 3.3,
we use horizontally long rectangular window for matching.
In our experiments, we use 8x4, 16x4 and 32x4 pixels win-
dows for evaluation. As for matching algorithm, because of
the brightness changes caused by the changing distance to
the target surface, materials and normal directions, a scaling
invariant technique is required; e.g., normalized cross cor-
relation (NCC), etc. Since NCC computation for all depths
requires large memory and computational costs, we intro-
duce two solutions such as hierarchical matching approach
and approximate nearest neighbor (ANN) search technique
(Sec. 4.3).

camera

projector

In focus

Installed 

aperture

Figure 4. Projected patterns with high frequency aperture and cir-
cular aperture.

3.2. Light field projection using a coded aperture

In a normal setup with a traditional projector, the pro-
jected pattern, which is a convolution of the pattern image
and the aperture shape, rapidly blurs out, eliminating high-
frequency details. Conversely, we propose to preserve high-
frequency patterns while we keep the total amount of light
energy as large as possible. Since a convolution of high fre-
quency patterns keeps high frequency, lines or dots for both
the pattern on the projector plane and the shape of the coded
aperture can be a solution. Furthermore, such configura-
tion has another important feature: the set of rays generated
by the convolution of the aperture and the projector pattern
forms a light field, realizing depth-dependent pattern pro-
jection. Such depth-dependency adds rich new features for
depth estimation by altering the patterns depending on the
distance. Fig. 4 shows the real patterns generated with a
projector with the coded aperture of slit pattern and those
of a normal projector with circular aperture for compari-
son. As shown in the figure, high frequency patterns are
preserved with our pattern for all ranges, whereas patterns
are rapidly blurred out with circular aperture.

Fig. 5(a) shows an example of how the convolution of
high frequency patterns constructs the light field in the
space. In the paper, the features of the pattern on the pro-
jector plane are composed of lines or dots, which are shown
as green points (f1, f2 and f3) in the figure. Similarly, the
aperture also consists of lines or dots. In this setup, the pro-
jected light becomes a set of sharp rays. The red lines in
the figure are rays that are emitted from a point in the pro-
jector plane, are then refracted by the lens, go through the
aperture mask (h1 and h2) and illuminate the target surface.
The projected patterns are shown as blue points.

Let the pattern on the projector plane be Ip, the aperture
shape be Ia, the distance between the aperture to the focal
plane be df , and the depth-dependent point spread function
(PSF) at depth d be Ia(d), where d is measured from the
aperture plane. Theoretically, Ia(d) can be calculated by
geometrically scaling Ia by factor of df−d

df
(i.e., Ia(0) = Ia

and Ia(df ) = δ(0)). Then, the projected pattern observed
from the optical center of the projector approximately be-
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Figure 5. Projection of light field. (a) Pattern projection with coded
aperture for different target depths, (b) rays from different aperture
holes, and (c) alternative light field projector using DOEs.

comes the convolution Ia(d) ∗ Ip 1. In designing both of
the aperture shape Ia and the projected pattern Ip, we aim
to preserve the high-frequency components of the projected
pattern, as described in Sec. 3.3.

In Fig. 5(a), there are three features (f1, f2 and f3 in the
figure) on the projector plane, and two holes (h1 and h2) on
the aperture. Then, the number of features on the projected
plane becomes generally 3× 2 = 6, except for the overlaps
of multiple features. As the distance from the projector to

1 Rigorously, the projected pattern in the 3D space is Ia(d) ∗ Ip(d),

where Ia(d) is a geometrically scaled image of Ia by factor of
df−d

df
, and

Ip(d) is a geometrically scaled image of Ip by factor of d
df

. For d near

df , Ia(d) ∗ Ip(d) can be approximated by Ia(d) ∗ Ip scaled by factor of
d
df

, and the observed pattern from the point of d = 0 can be approximated

by Ia(d) ∗ Ip.

the target surface changes, the projected patterns change.
Note that, if the target plane is in focus (d = df ), all the
rays from each slit will overlap, and the resultant pattern is
the same as Ip.

In Fig. 5(b), rays are classified by the aperture holes that
the rays go through. This is analogous to placing a small
projector at each aperture hole. If the aperture hole A is
large, the rays from the hole A will be blurred. Thus, we
make the size of the aperture holes small. To compensate
the decrease in light intensity, we increase the number of
aperture holes to obtain a higher total light energy. From
this perspective, using a line aperture pattern, which can be
considered continuously aligned dots, is advantageous.

The light field that can be generated by the proposed pro-
jector has some constraints, such as, the rays are focused at
the focal plane d = df so that the projected pattern becomes
the same as Ip. Similarly, for the plane d = 0, the pattern
becomes Ia. The light field should be designed under such
constraints.

In this paper, we also show that a similar light field pro-
jection is possible using two diffractive optical elements
(DOEs) as shown in Fig. 5(c). An advantage of such a de-
vice is a smaller energy loss. We experimented on this con-
figuration only for uniform repetitive patterns, and further
experiments will be a part of our future work.

3.3. Pattern design of projected pattern and coded
aperture

For stable depth estimation, a combination of the pro-
jected pattern and coded aperture should be designed care-
fully to present distinctive features on the target surface as
well as considering light energy efficiency. In the field of
DfD and deblurring, isotropic 2D broadband patterns are
commonly used for aperture design [27, 26, 23, 12, 21]. In
contrast with active depth measurement, uniqueness of the
projected pattern on the horizontal axis has priority over the
vertical information. Moreover, 2D patterns tend to lose
contrast because of the law of averages; Specifically, the
convolution operator in the defocusing effect Ia(d)∗ Ip acts
as an averaging filter and the more elements we have in the
projected and aperture pattens Ip and Ia, the lower contrast
we observe on the target surface because of the central limit
theorem. Therefore for the depth measurement, we should
consider the following conditions:

1. Horizontal spatial frequency of the projected pattern
on the target surfaces should be broadband.

2. The number of elements of the projected and aperture
patterns for convolution should be small to keep the
contrast high.

3. The number of elements of the projected and aperture
patterns should be dense to keep a large total energy.

4. The projected pattern on the target surface should be
unique on the horizontal axis.



Since some of the conditions are competing, we inves-
tigated the trade-offs involved by conducting simulations
for multiple cases of Ia and Ip, by generating images of
Ia(d) ∗ Ip for various d to find the best parameters. Ex-
amples of the generated patterns are shown in Fig. 6 (mid-
dle column). From condition 4, it is desirable that these
patterns have distinctive characteristics for different d. To
analyze this, the normalized correlations between the sim-
ulated patterns are calculated and visualized. The results
are shown in Fig. 6 (right column). Large diagonal (i.e., for
the images of right column of Fig. 6, the values of diagonal
lines that run from the left bottom corners to the right top
corners) and low off-diagonal values indicate high autocor-
relation and uniqueness at different depths. From the simu-
lation, we found that the randomly arranged vertical stripe
patterns for both projected pattern and coded aperture are
the best for the depth measurement as shown in Fig. 6 (case
D). Thus, in this paper, we use the combination shown in
case D. To minimize the effect of texture, we prepare three
different random lines patterns for each color channel.

In this combination, since all the projected pattern fea-
tures become vertical lines, vertical baseline of the cam-
era with respect to the projector does not generate parallax.
By positioning the camera with horizontal baseline, the ob-
served patterns include parallax effects.

4. Implementation and method details

4.1. Data sampling for image based approach

There are mainly two reasons why we propose an image-
based approach. The first is the difficulty of calibrating light
field parameters, since the observed patterns are a convolu-
tion of two patterns and decomposition is usually not an
easy task. The second is complex lens distortions, which
can be usually ignored or approximated by a simple distor-
tion model for passive stereo method, should be taken into
account in our method. For example, if a mathematically
ideal lens is assumed, PSF is shift-invariant, however, in re-
ality, actual lenses have numerous imperfect characteristics,
e.g., field curvature, coma and astigmatism, and they make
the PSF not only shift variant but also rotationally asym-
metric. Further, the PSF of the frontal defocus differs from
the backward defocus when the lens has a spherical aber-
ration. Chromatic aberrations also degrade the PSF intri-
cately. These imperfections of the lens clearly appear and
affect the results in our method, since all light rays from the
lens are independently utilized with a light field projector.
Moreover, both phenomena are mixed together and only an
integrated image is observed, so decomposition and param-
eter estimation become more difficult.

Considering this scenario, an image-based approach is
a simple solution because these factor affect equally input
and reference images and cancel each other. Moreover, we

(case A) random dots-random dots

(case B) random dots-random lines

(case C) uniform lines-uniform lines

(case D) random lines-random lines
Figure 6. Selected combinations of simulated patterns Ip and
aperture Ia, and visualized correlation matrices between the pat-
terns and depth d. (Left column) Projected patterns Ip outside the
red square, and coded apertures Ia inside the red square, (Mid-
dle column) simulated results Ia(ds) ∗ Ip, and (Right column)
visualized correlations. For the correlations, the horizontal axis
is dx, the vertical axis is dy , and the origin is at the bottom left
corner. Color at (dx, dy) means a sampled normalized correlation
between Ia(dx)∗ Ip and Ia(dy)∗ Ip. The center of the correlation
image corresponds (df , df ).

have a chance to exploit such effects to make the depth esti-
mation more robust. For example, spherical aberration has
the potential to disambiguate the frontal and rear defocus.

The actual sampling process is as follows. First, we set
a white planar board perpendicular to the projector’s op-
tical axis and images are captured by using a motorized
stage. Dense sampling is required because our projected
pattern drastically changes its appearance with small depth
changes. Note that higher precision than the sampling in-
tervals can be naturally realized with our method because
reconstruction is based on stereo, which usually achieves
sub-pixel accuracy with a window matching approach.

The advantages of our image-based framework are sum-
marized as follows: (1) multiple depth cues such as dis-
parity and defocus can be handled by a unified algorithm,
(2) most nonlinear phenomena such as optical aberrations
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Figure 7. Synthesizing the image with arbitrary rotation angles.

can be naturally canceled, (3) complicated calibrations, for
example, PSF modeling or epipolar analysis of defocused
images are not necessary.

4.2. Slanted plane adaptation

Since the surface normal of the object is not always par-
allel to the optical axis of the projector, the projected pat-
terns are naturally distorted. The naive solution is to capture
many reference images by rotating the plane for all possi-
ble angles, however, it increases capturing time and data
storage. As a solution, we synthesize images for the re-
quired orientations from the captured image set online. Fig.
7 shows the process of synthesizing images for two differ-
ent rotation angles. Note that since all the matching steps
are applied after rectification, only a single rotation axis is
needed to be considered since vertical lines are being con-
sidered as features.

4.3. Efficient stereo matching with hierarchical ap-
proach and a feature based search technique

Our image-based method requires a large reference im-
age database which consists of captured images and syn-
thesized images for various rotation angles (in our case
−60,−30, 0, 30, 60 degrees). Furthermore, given such a
large database, the computational cost of template match-
ing becomes enormous. In order to solve the problem, this
paper proposes two algorithms for depth estimation using
a hierarchical template matching and approximate nearest
neighbor (ANN) search [14]. The former approach prior-
itizes depth estimation accuracy rather than the processing
speed; the latter reduces the processing time with a little
sacrifice in accuracy.

For hierarchical matching, the coarse level solution of
NCC matching is searched first with large depth intervals
and low spatial resolution, and then, the fine level solution
is searched around the low level solution with fine resolu-
tion of depth and images. It should be noted that we cannot
drastically decrease the number of depth samples for the
coarse level because the pattern changes distinctively for
small depth changes. In our experiment, 2.5mm and 0.5mm
intervals are used for coarse and fine levels respectively.
Finally, since the result presents small noise, we apply a
global optimization algorithm based on belief propagation
to remove the error [3]. The matching costs of NCC for the
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Figure 8. Depth estimation results. Brown broken line repre-
sents DfD result [10], green dotted line represents simple random
dot stereo result, yellow dotted line represents the result using a
circular aperture with the same algorithm of ours and red dotted
line represents the result using a time-of-flight sensor (Kinect v2).
Note that we make the circular aperture size to be the same as total
aperture size of our slit aperture.

searched solution is used for the energy term of belief prop-
agation, with the regularization term for improving spatial
smoothness of the solution.

For the ANN approach, first, we make a compact feature
vector from a matching window, and then, we build a tree
structure from all the feature vectors. To make a compact
feature vector representation, intensities of pixels along a
vertical line in the matching window are integrated. Note
that pixel values are normalized in advance to mitigate the
scaling effect. The length of the feature vector can be fur-
ther shortened by averaging the vector with a certain length.
In our experiment, a matching window of 32 × 4 pixels is
first integrated vertically to produce a 32D feature vector,
and then, averaged every 4 pixels each to make an 8D fea-
ture. Then, those feature vectors are stacked into Kd-tree
using depth value as an index. In the reconstruction step, the
Kd-tree is searched directly from the compact feature vec-
tor constructed from the window of the camera image, and
thus, the reconstruction performance is much improved.

5. Experiment
5.1. Plane estimation for evaluation

The first experiment was conducted by using the opti-
cal system shown in Fig.2. Images were captured by shift-
ing the target screen placed on a motorized stage. Because
of the limitation of the length of the motorized stage, we
put a close-up lens to change the scale as to be 1/3 of real
length. With this scale, the motion range of the screen is



Table 1. ANN calc. time.
Data creation 108.8

Search 3.2

Table 2. NCC calc. time.
Coarse search 39.1
Fine search 83.7

Total 122.8

(a) Checker
board

(b) Wooden
board

(c) Dappled
texture

(d) News
paper

Figure 9. Texture samples used for experiment.
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(d) News
paper

Figure 10. Captured images of the board with various textures.
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Figure 11. RMSE of estimated depth of textured planes using (a)
ANN and (b) NCC for matching.

150mm-625mm from the projector and the camera, in-focus
distance is 250mm ±100mm for the projector, the reference
plane capturing interval is 0.5mm, the target plane capturing
interval is 10mm, and the matching window sizes were 8x4,
16x4 and 32x4 pixels. The depth value was estimated by us-
ing the proposed method and other methods for comparison
with RMSE shown in Fig.8. In the graph, we can observe
our methods including all the window sizes and time-of-
flight sensor can recover the correct depth for all the ranges,
whereas others rapidly decrease their accuracies when they
enter the defocus range. We can also confirm that even if
an accuracy of ANN is almost same as NCC, it drastically
reduces the processing time as shown in Table 1 and 2.

5.2. Accuracies on textured object

Next, we evaluated our method on textured objects.
Checkerboard pattern, glossy board, wooden board, dap-
pled pattern and newspaper were tested. Sample textures
are shown in Fig.9. The configuration of the camera and
the projector is the same as described in Sec.5.1. The cap-

tured images in Fig.10 show that the projected patterns are
strongly affected by textures. Fig.11 shows the RMSE re-
sults of both ANN and NCC. For both technique, the ac-
curacy decreases if there is a texture on the object, how-
ever, the proposed method can still estimate depth with high
accuracy even if the projected patterns are diminished and
some of them are divided into several parts by color dif-
ferences. We can also confirm that the quality of NCC is
slightly better than ANN, and thus, the rest of the experi-
ments are done by hierarchical NCC.

5.3. Accuracies of slanted planes

(a) input
image

(b) surface
direction

(c) top view (d) 3D shape

(e) input image (f) suraface
orientation

(g) 3D shape (h) top view

Figure 12. Shape reconstruction result of slanted planes and curved
surfaces.

To confirm the effectiveness of the slanted image synthe-
sis technique for arbitrary rotation angles, we reconstruct a
cube-shaped object and a sphere-shaped object. From the
sampled images of the reference plane, virtually rotated ref-
erence images with rotation angles of -60 ,-30, 0, 30, and
60 degrees were synthesized. From the real and synthesized
image set, the shapes of the objects were reconstructed. The
results are shown in Fig. 12, including the estimated direc-
tions of the normal vectors. As the reconstructed shape and
the visualized normal directions show, the positions of the
points were accurately estimated, although the normal di-
rections were just roughly estimated. For the cube-shaped
object, we extracted 3D points and calculated the RMSE of
the 3D points by fitting them to the dominant plane. The
value was 2.9mm where the distance from the camera to the
cube was about 300mm. The reason why the result is worse
than previous experiments is that each face of cube consists
of different color blocks with black border lines, and it is
more challenging object than previous cases.

5.4. Arbitrary shape and wide depth range test

We estimated the depth of more generic objects. First,
we measured the objects placed widely apart as shown in
Fig.13(a) and (b). Four objects are placed about 150mm,
300mm, 450mm and 620mm from the lens, respectively.
Fig.13 (a) shows the captured image with the projected pat-
tern and (c) and (d) show the reconstruction results. We



can confirm that the shapes are correctly estimated at right
position with small details. With this experiment, we need
to capture a high dynamic range (HDR) image with differ-
ent exposure time. An efficient HDR capturing system is
desired for achieve real one-shot scan.

Finally, we applied our method to shapes with curved
surfaces and non-uniform texture as shown in Fig.14(left
column). Those objects are placed between 250mm to
450mm from the projector. Fig.14 middle column shows
the reconstruction results with five pixel intervals for fast
calculation and the right column shows all pixel reconstruc-
tion to show capability of dense reconstruction. Fig.14(j)
shows zoom-up views of the dense reconstruction results of
(a). We can confirm that the curved surface is restored ac-
curately without any postprocess. In the results, we also ob-
serve some parts are missing in 3D shapes. This is because
the texture presents dark areas where no pattern is observed.

5.5. Shape reconstruction using DOE projector

We also tested shape reconstruction using DOE based
system as shown in Fig. 15(a). A target object is placed
at 150mm from the camera. Fig.15(b) shows the captured
image and (c) shows the reconstruction result. In the experi-
ment, since we use regular pattern for first DOE and just two
different regular patterns for second DOE, uniqueness of the
pattern and possible depth range is limited, however, we can
confirm that the shape is correctly restored with our proto-
type system. Construction of more unique patterns will be
investigated in the future.

6. Conclusion
In this paper, we propose a one-shot shape reconstruc-

tion method using a light field projector which is not a cen-
tral projection model. The projector is constructed by using
a combination of a special projected pattern and a coded
aperture, which preserves high frequency information while
maintaining a wide depth range. We also propose an image-
based stereo matching technique, which achieves robust re-
construction despite the severe distortion which inevitably
occurs with actual optics. Because of the heavy compu-
tational requirements of the basic image-based technique,
a hierarchical matching as well as ANN search are intro-
duced. By using our technique, arbitrary objects with com-
plicated texture are reconstructed for wide depth range with
high accuracy. In the future, joint optimization for design-
ing the projected pattern and coded aperture will be investi-
gated.
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(a)
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(c) (d)
Figure 13. Wide depth range shape reconstruction result. (a) Input
image, (b) top view, and (c, d) reconstruction results.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
Figure 14. Arbitrary shape with texture object reconstruction. Left
column (a,d,g) shows target object, middle (b,e,h) shows sparse
reconstruction and right column (c,f,i) shows dense reconstruction
results. Bottom row (j) shows zoomed up views, from left to right,
of the high resolution reconstruction to show the density.

(a)
(b)

(c)

Figure 15. DOE system experimental result. (a) The system con-
figuration, (b) target object illuminated by DOE, and (c) recon-
struction results.
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