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Abstract. We propose a practical method for calibrating the position and the
Radiant Intensity Distribution (RID) of light sources from images of Lambertian
planes. In contrast with existing techniques that rely on the presence of specu-
larities, we prove a novel geometric property relative to the brightness of Lam-
bertian planes that allows to robustly calibrate the illuminant parameters with-
out the detrimental effects of view-dependent reflectance and a large decrease in
complexity. We further show closed form solutions for position and RID of com-
mon types of light sources. The proposed method can be seamlessly integrated
within the camera calibration pipeline, and its validity against the state-of-the-art
is shown both on synthetic and real data.

1 Introduction

The problem of devising a usable, accurate calibration routine for the illumination prop-
erties of a scene is becoming increasingly relevant. As techniques for 3D reconstruction
become more accurate, the focus of the community has shifted towards more complex
scenarios where many of the traditional lighting assumptions are no longer valid, e.g.,
in 3D reconstruction from hand-held devices with on-board lighting [4] or in endo-
scopic images which are becoming more popular in the community [6]. In these cases,
anisotropic lighting combined with unstable or scarce features make traditional feature-
based methods prone to errors. On the other hand, especially in medical environments
there has been a resurgence of photometric techniques such as Shape-from-Shading
(SFS) and Photometric Stereo (PS) [26, 22, 1, 20, 7, 2], because of their inherent suit-
ability to textureless environments.

However, improvements in algorithmic and mathematical techniques have not been
matched by a commensurate improvement in modelling, and in virtually all aforemen-
tioned scenarios a realistic modelling of the light sources has been largely ignored. In-
deed, in the SFS and PS literature either directional [23, 10] or ‘omnilight’ [26, 20, 22]
light sources are considered. While these models can perform well in controlled condi-
tions, they are not suitable for the challenging environments where these techniques are
being applied, with focused lights exhibiting anisotropic Radiant Intensity Distributions
(RID) and placed close to the surface. This is also due to a lack of enabling technolo-
gies allowing to easily integrate the estimation of illumination parameters within the
standard camera calibration pipeline, with most existing technologies requiring costly
and time-intensive hardware solutions [16, 14].
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Specifically, in this work we address the lack of cheap, practical vision-based tech-
niques for RID calibration by introducing a fully image-based approach to calibration
of light position and RID that can be easily integrated in camera calibration routines.
Inspired by the first approach to the problem in [11], we extend it with the following
contributions:

1. A novel geometric property of shading of Lambertian planes, which relates the light
position to global maxima in the intensity.

2. An algebraic method for robustly finding the dominant light axis from global max-
ima in the intensity only, without the need for complex symmetry search as in [11].

3. Closed-form solutions for position and RID for classes of (an-)isotropic sources.
4. A complete pipeline for joint camera, light position and RID calibration using stan-

dard Lambertian calibration boards.

1.1 Related work

Calibrating the position of a light source is a well-studied problem in computer vision.
For distant light sources, all light rays are parallel and is therefore sufficient to estimate
a single direction vector, which can be accomplished from the specular highlights pro-
duced by illuminating shiny surfaces [3, 25]. In the case of point light sources where
the assumption of parallel light rays is no longer valid and is therefore necessary to
estimate the light position in space, current strategies still employ reflective objects of
known geometry such as spheres [27, 15, 13, 18], planes [17], or non-reflective objects
with known geometry [24]. Alternative methods requiring specialised hardware such as
LEDs and translucent screens [9] or flatbed scanners [19] have also been proposed. Ap-
plications have been proposed recently in works on PS using sources with anisotropic
RIDs for generic vision [8] as well as medical endoscopy applications [21, 2]; however
either none or ad hoc calibration methods were proposed in the cited works.

While the approaches above only characterise the positional information of the light
source, there is a limited number of techniques investigating RID calibration, i.e., deter-
mining the angle-dependent attenuation factor relative to the anisotropism of the light
source. The only vision-based approach in the literature was proposed by Park et al. in
[11]. In this method, geometric properties holding under the Lambertian assumption are
exploited to calibrate the light source. However, the method is effectively a 2-stage ap-
proach where the light position is first estimated using specularities from shiny surfaces,
thus contradicting the initial Lambertian assumption. Whenever Lambertian surfaces
are considered, the method was shown to have large errors in the position estimation.
The contradiction between Lambertian assumption and the use of shiny surfaces can
result in a breakdown of the assumptions depending on the light/camera configuration
[12]. Finally, from a computational perspective the method leverages the symmetry of
the projected light pattern, which on Lambertian surfaces results in a sensitive optimi-
sation process requiring a full 2D search.

Conversely, we improve on the state-of-the-art by proving an additional geomet-
ric property of the shading of Lambertian planes. This allows to find the dominant
light axis by inspection of the global intensity maxima, without expensive symmetry
searches. Moreover, we find a closed-form solution for position and RID for widely
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(a) (b)

Fig. 1: (a) Geometric setup under consideration. The Lambertian plane Π with surface
normal n lit by the point light source L is projected by the camera C on the image
plane I . Each 3D point M ∈ Π is projected to a point m ∈ I , and is related to L by
the light vector l. Two special points are defined on Π: V , which is the intersection of
the dominant light axis v with Π , and W , which is the closest point to L. The triplet
(V,W,L) defines the plane Σ, which intersects Π at the line s. (b) Supporting figure
for the proof of Lemma 1.

used classes of realistic light sources. Finally, we show how we can easily integrate our
proposed method within the camera calibration pipeline, using AR markers instead of
the traditional checkerboard pattern.

2 Shading of Lambertian Planes under Near Illumination

In this section, we analyse the reflectance properties of Lambertian textureless planes
under near illumination from point light sources. Let Π be a plane in space with known
position and orientation (R, t), a unit surface normal n̂ = (nx, ny, nz) illuminated by
a nearby point light source L. The light source is located at a position a = (ax, ay, az)
from the world origin, which in our formulation coincides with the position of the cam-
era C. The light source is characterised by a dominant unit direction vector v̂, and the
light vector between a 3D point M = (x, y, z) ∈ Π and L is represented as l. In our
notation, 3D points are given in uppercase letters, 2D points as lowercase letters, di-
rection vectors as boldface lowercase letters, matrices as boldface uppercase letters and
scalars as Greek letters.

This configuration is shown graphically in Fig. 1a. Under a generic Lambertian
reflectance model with an infinitely far away light source, the brightness at the pixel
(u, v) in the captured image I corresponding to the projection of M is independent
from the viewing direction:

I(u, v) = ρ γ
l · n̂
‖l‖

, (1)

where ρ is the surface albedo and γ is the power of the incident light on the surface.
This is the scenario that is traditionally considered in the photometric stereo literature
for Lambertian surfaces. However, when a more realistic setup is considered, the factors
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Fig. 2: Polar plots of common RID profiles. The plots indicate the relative radiance
emitted as a function of the angle from the main light direction (here assumed to be at
0◦). (a) Circular. (b) Elliptical. (c) Bell. (d) Cardioid. (e) Petal. (f) Isotropic.

related to the nearby light source can no longer be ignored. More specifically, while for
infinitely far light sources two light rays li, lj would be parallel, in this case they will
no longer be parallel and intersect at L. Likewise, the incident light power γ is replaced
by the Radiant Intensity Distribution (RID) function g(φ) of the angle between the
normalised light vector l̂ and the dominant light direction. Finally, the attenuation term
r2 = ‖l‖2 represents the light fall-off which is inversely proportional to the square of
the distance between M and L:

I(u, v) = ρ
g(φ)

‖l‖2
l · n̂
‖l‖

. (2)

In the equation above, the shape of g(φ) is determined by the physical characteristics
of the light source. Generally, focused lights such as those found on flash cameras,
spotlights and endoscopes will exhibit some degree of anisotropism. In Fig. 2 examples
of common RIDs are provided. Similarly to the work in [11], our single assumption is
that the RID is radially symmetric about L, so that all RIDs can be represented as a 1D
function of the angle φ.

2.1 Geometric Properties of Illumination Model

Consider the setup shown in Fig. 1a. The plane Σ can be constructed from the triplet of
points (V,W,L), where V is the intersection of v and Π , and W is the closest point to
L on Π . The intersection of Π and Σ defines the line s. Orientation and position of the
calibration plane Π is known to the observer.

In [11] it was shown that for any radially symmmetric RID about the main light
axis v, the observed brightness on a Lambertian plane will be bilaterally symmetric.
This key result was extended by noticing that the observed brightness is in fact radially
symmetric whenever the RID under consideration is isotropic. Thus, it was possible to
detect s and Σ through a 2D search for the axis of symmetry, or 1D whenever the light
position was already known.

In this section, we prove a further property of this geometric setup: given the shading
image of a Lambertian plane, its global maximum will invariably lie on the line s. This
allows us to recover the dominant light direction and, for several classes of RID, the
light source position directly from the position of the maximal points, without the need
for computationally expensive and error-prone symmetry search. More formally, we
prove the following:
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Lemma 1 (Location of Global Maximum). Let Π be a Lambertian plane of constant
albedo illuminated by a nearby point light source L with dominant view direction v and
radially symmetric RID g(φ), and let s be a line on Π formed by W , the closest point
to L on Π , and V , the point of intersection between Π and v. Then, the point where the
global maximum of the intensity is reached, Q, will also lie on s.
Proof by contradiction of Lemma 1. Consider the Lambertian reflectance function in
Eq. (2). This can be represented as the product of two functions f1(ρ, l,v), f2(l,n):

I(u, v) = f1(ρ, l,v)f2(l,n),

f1(ρ, l,v) = ρ g(l̂ · v̂),

f2(l,n) =
l · n
‖l‖3

.

(3)

By construction, f1(ρ, l,v) is an elliptical conic section on Π with centre V and sym-
metrical about s. Also, f2(l,n) is globally maximised at W : since W is by definition
the closest point to L, at W the denominator of f2(l,n) is minimised. Moreover, as
W is the closest point to L it also implies that at W , l ‖ n, thereby also maximising
the numerator. Since both the distance from L and the angle between l and n will be
radially symmetric aboutW , we conclude that f2(l,n) is also radially symmetric about
W .

The two functions will form isocurves centred at V and W respectively (Fig. 1b).
Now consider a globally maximal point Q∗ not lying on s. Without loss of generality,
let us assume that the distance between V and W is α and let us further assume that
this point lies on the β−isocurve off1(ρ, l,v), meaning that it lies on a circumference
of radius β centred at V . The three points form a triangle 4VWQ∗, where the length
the two known sides is VW = α and V Q∗ = β respectively, while the length of the
third side WQ∗ = ζ can be expressed as:

ζ2 = α2 + β2 − 2αβ cos∠WVQ∗. (4)

Since bothα and β are of fixed length, ζ will have its minimum length when∠WVQ∗ =
0, in other words when Q∗ lies on s. Let us call this point Q. Since WQ < WQ∗, Q
lies on a higher isocurve of f2(l,n) while lying on the same isocurve of f1(ρ, l,v) as
Q∗. However, this implies that the product of the two functions will yield a higher value
for Q than for Q∗, contradicting our initial assumption that the global maximum does
not lie on s. �
Corollary 1. When the light source is isotropic, no dominant light direction is present,
then α = 0 and Q = W .

3 Illuminant Properties Estimation

We estimate light position and RID from N purely Lambertian plane images Ii. Per-
spective distortion-free images Ǐi are first created from the plane position and orienta-
tions (Ri, ti) obtained during AR-marker based camera calibration. Since all images
are Lambertian, there are no view-variant effects to compensate for during the perspec-
tive correction.
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3.1 Dominant light axis estimation

We estimate the dominant light axis v by observing that all planes Σi form a pencil
around it, each with normal vector v × n̂i. As the symmetry line si is the intersection
of Σi and Πi, the segment L−Qi between the light source and the ith maximal point
will also lie on Σi and

v × n̂i · (L−Qi) = 0. (5)

After expansion, and by stacking observations about the maximal points and the plane
normals from each of the Πi planes, we obtain a system Au = 0, where A is a rank
5, N × 9 matrix and u a vector of unknowns. Each row Ai of the matrix A and u
correspond to:

Ai = [nz,−ny, nx,−nz, ny,−nx, (nzQy − nyQz) , (nxQz − nzQx) , (nyQx − nxQy)],

u = [vyLx, vzLx, vzLy, vxLy, vxLz, vyLz, vx, vy, vz].
(6)

The elements of v are encoded in the last three rows of the null space of A, which
is found after a rank 5 approximation of A to minimise the effect of noise followed
by SVD. Generally, at this stage any candidate point Lc along v will satisfy Eq. 5, so
while the 3 directional components of v can be obtained from the estimate of u, the
location of L will still be unknown and is estimated with the methods presented in the
next sections. Instead, we fix v in space by finding a generic point V0 on v by stacking
the Hessian normal forms of Σi: (n̂i × v)

>
V0 = (n̂i × v) ·Qi and solving for V0.

At least 9 observations are sufficient to obtain a reliable estimate of v from the
maximal points only. These are estimated by thresholding the top percentile of the pixel
intensities, and calculating the intensity-weighted centroid. Given the smoothness of the
reflectance function, this simple procedure is generally sufficient for a reliable estimate.
Corollary 2. When the light position is known, either by design or because of prior
specular calibration, the orientation of the dominant light axis can be obtained from
only two images and their maximal points. This is particularly important for practical
systems.

3.2 Closed-form estimation of light position and RID

In this section we derive the procedure necessary for estimating light position and RID
parameters directly in closed form, with no additional information required apart from
the location of the maximal points. This procedure is applicable to both isotropic and
regular anisotropic sources, approximating a wide variety of practical scenarios.

1) Isotropic sources. For isotropic light sources, according to Corollary 1 the maximal
points coincide with the closest points on the plane from the light source. Therefore,
there is no need to estimate v according to the previous section, and the maximal point
Qi on a plane (n̂i, ti) closest to light source L is:

Qi = L+ (n̂i · (ti − L)) n̂i. (7)
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Hence, dropping the index i for notation clarity, we can build a linear system given one
maximal point:1− n2x −nxny −nxnz

−nynx 1− n2y −nynz
−nznx −nzny 1− n2z

LxLy
Lz

 =

Qx − (n̂ · t)nx
Qy − (n̂ · t)ny
Qz − (n̂ · t)nz

 . (8)

Since the matrix above is of rank 2, at least two observations are needed to be stacked
together and remove the ambiguity. Therefore, for isotropic sources, given two observa-
tions it is possible to calculate the light position. This coincides with the specular case,
where at least two views of a specular highlight are necessary to triangulate the light
position.

2) Regular anisotropic sources. For regular anisotropic light sources, we consider RID
functions of the form g(l,v) = cos (∠ (l,v))

µ
= ((l · v) /‖l‖)µ, which approximates

well the light distributions from spotlights commonly found in halogen or LED light
sources, examples of which are shown in Fig. 2a, 2b. We decide to concentrate on this
form as it has been shown to work well in practical scenarios in the photometric stereo
literature, e.g., in [8].

To locate L we proceed by first recovering the dominant light axis v according to
the procedure outlined earlier. This leaves one degree of freedom for the position of L
along the known axis. To simplify our mathematical treatment, we transform the system
so that this degree of freedom will translate into a single unknown. To achieve this, we
first rotate our complete frame by a matrix R∗ so that the resulting vector v∗ will be
parallel to the vector u =

(
0 0 1

)ᵀ1.
The rotated system consists of the new unknown light source position L∗ with dom-

inant light vector v∗, the rotated planes Π∗i with unit normals n̂∗i and translations t∗i .
After rotating the reference frame, the intersection points V ∗i between the dominant
light vector and the planes will be aligned parallel to the z−axis, with (x, y) coordi-
nates equal to (L∗x, L

∗
y), thus leaving a single unknown L∗z to be calculated. We now

parametrise a point P on the intersection line s∗ between each plane Π∗i and Σ∗i :

P (λ) = V ∗ + λ

W ∗x − V ∗xW ∗y − V ∗y
W ∗z − V ∗z

 , (9)

where we drop the index i for clarity. The intensity function along the intersection line
can then be derived as:

I(λ) = ρ
(P ∗z (λ)− L∗z)

µ
(L∗ · n̂∗ − P (λ) · n̂∗)

‖L∗ − P (λ)‖(µ+3)
. (10)

At maximal points W ∗, ∂I(λ)∂λ = 0. Noting that at these points λ = 1, we obtain:

0 = (W ∗z − L∗z)
(µ+1) µk1k2 (W ∗z − V ∗z ) + (W ∗z − L∗z) (k2 (W ∗ − V ∗) · n̂∗ + (µ+ 3)k1k3)

‖L∗ −W ∗‖2(µ+5)
,

(11)
1 Full expressions given in the supplementary material.
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where k1, k2, k3 are polynomials in L∗z of degree 1, 2 and 1 respectively.1 The zeros of
the functions can occur either when one of the µ+ 1 repeated roots (W ∗z − L∗z) is zero
or when the numerator is zero. Since the former can never be zero as L∗z 6= W ∗z , the
problem of finding the unknowns µ and L∗z is reduced to finding the zeros of numerator.
This is linear in µ and cubic in L∗z , irrespective of the value of µ. Given that we have
at least 9 observations from the estimation of v, the two unknowns can be efficiently
estimated using a numerical equation solver. Therefore, from the maximal points only
we can retrieve dominant light direction, light location and RID parameters of regular
anisotropic light sources.

3.3 Optimisation procedure for complex anisotropic sources

Light position estimation For lights with complex RIDs, it is more difficult to obtain
an analytical expression for the position as a function of maximal points, and we use
instead an optimisation procedure. Instead of optimising the full reflectance function
which requires RID knowledge, we extend the work in [5], by noting that given N
Lambertian planes crossed by a ray l, the intensity of the points Ii(ui, vi) on l obeys
the following relationship independently of albedo or RID:

3

√
I1(u1, v1)

l · n̂1
‖l‖1 = · · · = 3

√
IN (uN , vN )

l · n̂N
‖l‖N . (12)

We start our search for L by picking the first crossing point L0 between the planes and
v (since we assume that all planes are in front of the light source) and proceeding back-
wards. For each candidate point Lc, we trace J random rays starting from it, compute
their intersections with the planes and obtain the corresponding pixel intensities by pro-
jecting using the known calibration parameters. From Eq. (12), we compute the set of
observations rj = {r1j , ..., rNj} relative to each ray. An initial approximation for L is
found by minimising the cost based on the variance of the sets rj :

E(Lc) =
1

JN

∑
j∈J

N∑
i

(rij(Lc)− r̄j(Lc))2. (13)

Helped by the RID independency of our formulation, in our experiments we have in-
variably foundE(j) to be convex, as we show in the supplementary material. The single
unknown for the light position is found through a Levenberg-Marquadt optimisation of
E(j).

RID parameters optimisation Once the position of the light source is known, for
complex RIDs it is necessary to estimate the distribution from the observed intensities.
In our case, given the view-invariant Lambertian images, the RID is modeled with a 4th

order polynomial with five unknown coefficients:

g(v, l) = p4φ
4 + p3φ

3 + p2φ
2 + p1φ

1 + p0. (14)
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(a) (b) (c)

(d) (e)

Fig. 3: Images from the two experiments with real data. (a) The AR board used for
joint camera and light calibration. (b) The lights tested, left to right: narrow, medium
and wide cones. (c) Experimental setup. (d) Head of the scope used for the experiment,
with the three coloured LEDs around it. (e) Calibration procedure.

Since the RID function has the constraint gmax = 1, the albedo is found as the normal-
ising value for the estimated function. We solve the system from Eq. (2) by stack-
ing K observations in the vector b = I(u, v)‖l‖3/(l · v̂) and solving the system
Ap = b, where A is an K × 5 matrix where each row is the vector of calculated
angles [φ4 φ3 φ2 φ 1] between the calculated v and the light vector to the projected 3D
position of the plane pixels, while p is the 5× 1 vector of unknown coefficients.

4 Results

4.1 Synthetic data

We generated 20 datasets for each of the 6 RID types in Fig. 2. Each dataset contains
a plane observed at 20 positions/orientations. In our experiments, we test the angular
error of the estimated dominant view axis, the position error of the source, as well as the
MSE between the estimated and ground truth RIDs. The error measures in Fig. 4 are the
average of the 20 datasets for each RID type. The proposed method is compared with
the state-of-the-art in [11]. For fairness, while it is not a requirement for our proposed
method, we ensured that the orientations generated showed enough of the symmetric
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Position Error, Proposed Method

Noise level
RID type 0% 2.50% 5% 7.50% 10%
Circular 0.26 0.89 1.51 1.83 1.98

Elliptical 0.37 1.85 2.28 3.12 3.53
Bell 1.12 2.1 3.89 5.75 8.03

Cardioid 1.05 1.83 3.68 4.53 6.4
Petal 0.97 2.23 2.89 4.12 5.9

Isotropic 0.03 0.02 0.05 0.06 0.16

Position Error, [11]

Noise level
RID type 0% 2.50% 5% 7.50% 10%
Circular 2.14 5.64 13.48 19.37 23.3

Elliptical 2.06 9.52 17.34 21.19 29.81
Bell 2.41 4.96 8.58 16.64 18.02

Cardioid 2.26 6.27 16.54 27.83 33.06
Petal 1.65 5.31 15.72 21.69 33.74

Isotropic 3.6 4.11 4.87 7.01 8.14

Angular Error, Proposed Method

Noise level
RID type 0% 2.50% 5% 7.50% 10%
Circular 0.05 0.21 0.25 0.43 0.57

Elliptical 0.1 0.18 0.22 0.39 0.47
Bell 0.09 0.17 0.24 0.46 0.51

Cardioid 0.09 0.19 0.22 0.4 0.52
Petal 0.06 0.2 0.23 0.37 0.48

Angular Error, [11]

Noise level
RID type 0% 2.50% 5% 7.50% 10%
Circular 1.81 1.91 1.98 2.35 2.78

Elliptical 1.69 1.83 1.85 2.07 2.13
Bell 1.35 1.43 1.51 1.62 1.66

Cardioid 1.83 2.12 2.57 2.99 3.12
Petal 1.12 1.44 2.31 2.64 2.95

RID MSE, Proposed Method

Noise level
RID type 0% 2.50% 5% 7.50% 10%
Circular 5.8E-7 1.5E-5 1.4E-5 5.5E-5 7.4E-5

Elliptical 4.8E-8 9.5E-5 1.8E-6 3.2E-6 7.4E-6
Bell 0.01 0.04 0.05 0.09 0.13

Cardioid 0.02 0.03 0.07 0.08 0.15
Petal 0.01 0.03 0.06 0.08 0.12

RID MSE, [11]

Noise level
RID type 0% 2.50% 5% 7.50% 10%
Circular 0.04 0.07 0.19 0.39 0.42

Elliptical 0.03 0.11 0.21 0.31 0.37
Bell 0.03 0.08 0.15 0.26 0.31

Cardioid 0.04 0.13 0.31 0.55 0.57
Petal 0.02 0.09 0.23 0.5 0.55

Fig. 4: Results from [11] and this work shown as dashed and solid lines respectively. (a),
Top tables: light position estimation error in mm. (b), Middle tables: angular estimation
error of dominant light vector in degrees. (c), Bottom tables: MSE of estimated RID.
All errors measured against different noise levels.

pattern to avoid failure cases of [11]. Finally, we explore the noise robustness of the
technique by injecting increasing percentages of uniformly distributed noise.
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As shown in Fig. 4, the proposed method (solid lines) drastically reduces the errors
in [11] (dashed) for all RID types. Numerical results are shown in the tables. Different
colours of lines represent different RID types. Whenever the closed form solution can
be used (i.e. for Circular, Elliptical and Isotropic RIDs), the estimated solution is very
robust to noise with error close to zero in both position and RID. The robustness is due
to the fact that only intensity maxima need to be found, which can be estimated very
reliably. Whenever the optimisation of Sec. 3.3 has to be used, the errors increase, albeit
at a slower rate than [11]. Extending the closed form solution to more classes to avoid
the optimisation will be the subject of our future work. On the other hand, the method
in [11] suffers from inaccuracies in the position estimation, which adversely affect the
RID estimation as well. It is important to stress the difference in complexity between
the two methods. Mainly due to the 2D symmetry search, our implementation of the
method in [11] requires several minutes for each plane, while the proposed method
can process the full set in a few seconds. In all cases at a given noise level, our worst
performance is better than the best performance of [11].

4.2 Real data

We test our proposed technique in two separate scenarios. First, with three halogen light
bulbs with equal power but different beam widths (Fig. 3b). Second, we mounted three
external (red, blue and green) LEDs with a housing diameter of 7.9mm on a standard
medical endoscope with an onboard camera in a triangular configuration (Fig. 3d). In-
stead of the traditional checkerboard used for camera calibration, we print on a matte
sheet of paper AR markers for camera calibration, while leaving the center blank to
visualise the projected light pattern for light calibration (Fig. 3a, 3c, 3e). This allows to
jointly perform camera and light calibration during the same procedure without elabo-
rate setups. Crucially, while the range of feasible plane orientations is limited with shiny
planes and specular highlight triangulation, using Lambertian planes allows to use the
full range of plane orientations necessary for accurate camera calibration.

In the first experiment, For each of the three light bulbs, we capture 17 images.
The lights were placed at approximately 25cm from the camera. Validation for the light
position is obtained by specular highlight triangulation using a shiny checkerboard.
RID validation information is obtained from the light manufacturer’s datasheet. The
position estimation error was calculated with respect to the result of a specular highlight
triangulation. However, the positional errors calculated (18.3mm 12.9mm and 13.5mm
for narrow, medium and wide beam lights respectively) were within the uncertainty of
the specular highlight triangulation, since all rays do not intersect in a single point. The
RID is shown in Fig. 5. It can be seen that while the polynomial approximation faithfully
reproduces the RID for the wide and medium beams, it gives a slightly loose fit to the
sharp spike of the narrow-beam light. Our future work will concentrate on extending
the closed form solution to more general classes of light sources, thus avoiding the
sensitive light position optimisation, as well as more general representations for the
RID. In the second experiment, for each LED we captured 7 images using a scaled
down version of our calibration board. The small baseline between light and camera
makes it difficult to visualise the symmetry of the projected pattern needed by [11],
highlighting the advantage of our method where only brightness maxima are required.



12 Marco Visentini-Scarzanella, Hiroshi Kawasaki

  0.2   0.4   0.6   0.8   1

30

210

60

240

90270

120

300

150

330

180

0

(a)

  0.2   0.4   0.6   0.8   1

30

210

60

240

90270

120

300

150

330

180

0

(b)

  0.2   0.4   0.6   0.8   1

30

210

60

240

90270

120

300

150

330

180

0

 

 

(c)

Fig. 5: Estimated RIDs for (a) wide, (b) medium and (c) narrow beam halogen bulbs.

(a) (b)

Fig. 6: (a) Estimated RID for the endoscope LED. (b) Position calibration results for the
coloured LEDs: their position in a triangular configuration around the camera (black
square) and slight convergence reflects the real setup.

Position calibration results are summarised by Fig. 6b, where we show the reconstructed
position and orientation of the 3 LEDs reflecting their triangular configuration around
the camera (black square in the figure) already shown in Fig. 3d. The correctness of the
position was checked by hand and the angle of vergence between the dominant vectors
of the 3 LEDs also corresponds to our setup, which was made so that the LED beams
would focus at a distance of 7-8cm. The RID result is shown in Fig. 6a. While we have
no ground truth from the manufacturer, we can see that the fitted RID function shows a
curve reaching 10% of its maximal brightness at an angle of ≈ 25◦, corresponding to
an approximately elliptical RID, which is expected from a focused light source.

5 Conclusions

In this paper we propose an approach for calibration of light RID and position that can
be integrated within the standard camera calibration pipeline. In particular, we prove a
novel property of near lighting on Lambertian planes which allows to calculate the dom-
inant orientation of the light source by observing only the point of maximum intensity
on the plane, thus constraining the light position to a single degree of freedom. This,
combined with closed-form solutions with particular classes of light sources, allows us
to have demonstrably better results for all types of light sources than the state-of-the-art,
which instead relies on computationally expensive, sensitive symmetry searches. The
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method was validated with synthetic data as well as real data with a selection of differ-
ent light sources and camera types, including an example application with endoscopic
data.
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