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Abstract

In this paper, we propose an active 3D reconstruction
method with two cameras and one projector (2C1P) sys-
tem for capturing moving objects. The system reconstructs
the shapes from a single frame of each camera by finding
the correspondence between the cameras and the projec-
tor based on projecting wave grid pattern. The projected
pattern gives the constraint of correspondence between the
two cameras in addition to between a projector and a cam-
era. The proposed method finds correspondence by energy
minimization on graphs constructed by detecting a grid pat-
tern in camera images. Since the graphs of two cameras
are connected as a single graph by using the constraint be-
tween cameras, the proposed method simultaneously finds
the correspondences for two cameras, which contributes to
the robustness of correspondence search. By merging range
images created by the correspondence of each camera, we
reduce the occluded area compared to the case of one cam-
era. Finally, the proposed method optimizes the shape as
three-view stereo to improve the accuracy of shape mea-
surements. In the experiment, we show the effectiveness of
using two cameras by making comparison with the case of
one camera.

1. Introduction

Recently, capturing the shapes of objects in motion has
become popular in various applications. For example, gam-
ing device that can capture a human motion in real-time and
create a device-free interface made more than ten million

sales [8]. Another example is a performance capture [2]
which acquires surface of the shape and kinematic informa-
tion for fields such as 3D movies, motion analysis, apparel
manufacturing.

Various approaches including multiview stereo, TOF
camera and its variations devices have been proposed to
obtain surface shapes of moving objects. Among them,
structured-light stereo systems are suitable for capturing
moving objects and have been widely researched [15, 5,
19, 11]. To capture moving objects with high FPS, spatial-
encoding methods that use a single input image for recon-
struction (a.k.a. one-shot scan) have been proposed. Since
structured-light systems are active methods, they have sev-
eral advantages. For instance, simplification of correspon-
dence search, robustness for capturing texture-less objects,
and simple setup with one camera and one projector.

One of the disadvantages of the spatial-encoding meth-
ods is that the ambiguity on correspondence. Since these
methods find the correspondence between camera and pro-
jector from a single image and the information embedded in
the single projection pattern is limited, accuracy, density, or
robustness of measurements will be sacrificed in the spatial-
encoding methods. The goal of this paper is to improve the
robustness of correspondence by adding a camera that gives
additional constraint.

Additionally, surfaces that are measurable by the meth-
ods based on triangulation is restricted to the ones visible
from more than two cameras or projectors. In the cases
of structured-light systems, even if the pattern is projected
on the surface, the surface parts occluded from the camera
cannot be measured. Using two cameras contributes to the
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efficient usage of the projected pattern by reducing the oc-
cluded area.

In this paper, we extend one of the spatial-encoding
methods proposed by Sagawaet al. [13], which reconstructs
shapes by projecting a static grid pattern of wave lines. In
their previous approach [4], they proposed a setup with one
camera and two projectors (1C2P). The method casts par-
allel lines from each projector and makes the grid pattern
on object’s surface. Since the grid is necessary for recon-
struction, the part only visible from one projector must be
connected to the area that have grid pattern. In contrast, we
use two cameras and one projector. Our approach has the
following advantages:

1. Improve the robustness of finding correspondences
by using camera-camera information in addition to
camera-projector information.

2. Improve the accuracy of correspondences by three-
view geometry of the 2C1P system.

3. Reduce the occluded area and increase the efficiency
of the projected pattern.

The method proposed in [13] finds the correspondence as
the energy minimization problem of a graph which is con-
structed by detecting the grid pattern in the camera image.
Since the detected graph should satisfy the geometrical con-
straint as the projection of the grid pattern, the constraint is
used to find the correspondence. If we have two cameras
and one projector, the additional geometrical constraint be-
tween them exists, which is known as trilinear constraint in
multiple view geometry. We introduce this constraint to the
energy minimization of the graph in this paper.

2. Related Work

Structured-light systems are categorized into two types,
temporal-encoding or spatial-encoding method [14]. In
a temporal-encoding method, multiple patterns of illumi-
nations are projected, and the corresponding information
is encoded in the temporal modulations. Thus, it is es-
sentially unsuitable for acquiring dynamic scenes. How-
ever, some methods are proposed to resolve this problem;
e.g., changing the projected patterns with high frequencies
[10], reducing the required number of patterns by using
phase patterns[21], or using DMD patterns[9]. Another ap-
proach is a space-time stereo, where multiple cameras are
used with temporally varying the illumination [22]. The
method in [21] used two cameras to remove phase ambigu-
ity, which is regarded as the combination of passive stereo
and structured-light system, while the pattern are not de-
signed to give unique correspondence in space-time stereo.
Although it is reported that some works can capture around

Figure 1.The proposed scanning system uses two cameras and one
projector (2C1P).

100 FPS by combining motion estimation, since these meth-
ods require multiple frames, the quality of the results de-
grade if the object moves fast.

A spatial-encoding method uses a static pattern and usu-
ally requires just a single image, and thus, it is suitable to
capture dynamic scenes. Many methods have been pro-
posed to solve the problems;e.g., using multiple lines with
globally-unique color combinations [18, 23], dotted lines
with unique modulations of dots [7, 1], 2D area informa-
tion for encoding [20, 8], using the phase of a fringe pat-
tern [17, 16], or connections of grid patterns [6, 5, 12, 19].
However, no method has achieved sufficient performances
in all aspects of precision, resolution, and stability. While
projecting wave grid pattern [13] is a solution to the prob-
lem, it has restriction on the relative position between pro-
jector and camera. In this paper, we propose a method to
use two cameras for finding correct correspondence even in
the case that the cameras are at an inappropriate position.

3. Wave Grid-based Active Stereo with Two
Cameras

The proposed method uses two cameras and one projec-
tor (2C1P) as shown in Fig.1. To reconstruct the shapes
of moving objects, we extend the method proposed in [13],
the system which consists of one camera and one projec-
tor (1C1P). We first explain the basic method and then
describe our new approach that introduces camera-camera
constraint.

3.1. 1C1P System with Wave Grid Pattern

The basic system [13] has a single projector and a cam-
era. Since they are assumed to be calibrated, the intrinsic
and extrinsic parameters of the devices are known. The
projector casts a static pattern as shown in Fig.2 (a). The
pattern consists of vertical and horizontal sinusoidal curves
to create grid shape. Since the pattern is static with single



(a) (b) (c)
Figure 2.(a) is an example of a wave grid pattern. (b) is an input
image. (c) is the grid graph generated by line detection.

color, no synchronization is required and high FPS scanning
is possible.

First, we detect a grid pattern from captured images by
the method based on belief propagation (BP) proposed in
[12], which extracts vertical and horizontal curves in the
camera image separately by discriminating their direction.
Next, the grid graph is constructed from the detected pat-
tern. The nodes of the graph are calculated as the intersec-
tion points of vertical and horizontal curves, and the edges
are given by connecting the neighboring intersection points
of a detected curve as shown in Fig.2(c). Then, the epipolar
line on the projected pattern is calculated to find the candi-
dates of correspondence to be used for each node. The best
correspondences are chosen from the candidates by energy
minimization based on BP. The depths for all pixels of the
camera are interpolated by using the correspondence of the
graph nodes. Finally, the depths are optimized by matching
the points between the projected pattern and the captured
image, and the dense 3D shapes are reconstructed from the
depths.

The method based on projecting wave grid pattern uses
the constraint that the nodes connected by the edges should
be on the same line in the projector pattern, which is called
coplanar constraint in [5]. In the case that the epipolar line
in the projector image is parallel to the direction of wave
lines, the wave lines do not curve regardless of the shape
of the object, which indicates that the connectivity gives no
constraint. While a 1C1P system cannot solve the prob-
lem in such cases, the proposed method can find the correct
correspondence by using the additional constraint given by
a 2C1P system. Not even in the extreme case described
above, the camera-camera constraint is effective for robust
correspondence search.

3.2. Adding Geometrical Constraint between Cam­
eras

The proposed method uses the constraint placed between
the cameras as additional information to find correspon-
dences. As described in the following section, the method
determines the correspondences based on the energy min-
imization on the grid graph. Therefore, we introduce the

additional constraints as the edges that connect graphs of
two cameras.

Fig.3 shows how to generate edges between two graphs.
First, we detect the wave line on the camera images and cre-
ate the grid graphs. Next, let us consider to determine the
corresponding point in the projected pattern of a nodep0 of
camera 0, which is a grid point where two lines intersect.
The candidates of the corresponding pointstp0 ∈ Tp0 are
the intersection points of the pattern on the epipolar line of
p0 in the projector image, whereTp0 are the set of the can-
didates for the nodep0. If we assume the correspondence
of p0 and tp0 , the 3D coordinatesP3D(tp0) for the nodes
p0 are calculated by triangulation between camera 0 and the
projector. Next, the projection of the 3D pointsP3D(tp0)
onto the image of camera 1 isP1(tp0

) as shown in Fig.3. If
the nodep1 of camera 1 satisfies the following two condi-
tions,p0 andp1 can be the corresponding points.

D(p1, P1(tp0)) < θ and tp0 ∈ Tp1 , (1)

whereD(a, b) is the distance between pointsa andb, θ is
the radius of the search area near the node fromP1(tp0

),
andTp1 is the set of candidates oftp1 . FourP3D(tp0) are
projected onto camera 1 in Fig.3. Since the leftmostP1(tp0

)
has no nodes in the search area, no candidate of correspon-
dence is found. While the rightmost one has a nodep1 in the
search area, the node does not have the same candidatetp0

in Tp1 . Since the middle two projections satisfy the above
condition, their nodes are connected top0. Once the edges
between two cameras connect their graphs, they become a
single graph, which enables to simultaneously optimize the
correspondences search of two cameras.

In this method, some incorrect edges can be generated.
The second projection from the left Fig.3 is an example of
incorrect edges, which are not on the object’s surface. How-
ever, if the node has both correct and incorrect edges, the
total cost of BP is not affected by the incorrect edge (de-
tails are described in Sec.3.3). In the case that a node has
only incorrect edges, the candidate of correspondence can
be determined as false in the process of BP if the number of
incorrect edges is not sufficiently small.

We find the candidates of correspondence from camera 1
to camera 0 in the same manner, too.

3.3. Simultaneous Correspondence Search of Two
Cameras as Energy Minimization of a Single
Graph

Now, we have obtained a single grid graph for two cam-
eras by detecting lines and reprojecting points to another
camera. The next step is to find the best combinations of
correspondences, which is determined by the energy mini-
mization on the grid graph.

The grid graph consists of nodesp0 ∈ V0,p1 ∈ V1, edges
by line detection(p0, q0) ∈ U0, (p1, q1) ∈ U1, and edges



Figure 3.Grid pointstp0 ∈ Tp0 of the projector pattern are the
candidate of correspondence of a nodep0 of camera 0.P3D(tp0)
is calculated by using each correspondence, andP1(tp0) is the
projection onto camera 1. Ifp1 is nearP1(tp0), the edge between
p0 andp1 is generated to introduce a candidate of correspondence
between cameras to the graph.

between cameras(p0, p1) ∈ S, wherep0 and q0 are grid
points, V0 is the set of grid points, andU0 is the set of
edges of camera 0.p1, q1, V1 andU1 are those of camera
1. S is the set of edges between cameras. A grid pointp0
has the candidates of corresponding pointstp0 ∈ Tp0 in the
projector pattern. In the case of 1C1P system, the energy of
assigning corresponding pointtp0 to each grid pointp0 is
defined as follows:

E(T0) =
∑

p0∈V0

Dp0(tp0) +
∑

(p0,q0)∈U0

Wp0q0(tp, tq), (2)

whereT0 = {tp0 |p0 ∈ V0}. Dp0(tp0) is the data term of
assigning a candidatetp0 to p0. Wp0q0(tp, tq) is the regu-
larization term of assigning candidatestp0 andtq0 for neigh-
boring grid pointsp0 andq0. The data term is calculated by
comparing the local pattern around the points between cam-
era and projector images. The regularization term is zero if
tp0

andtq0 are on the same line, otherwise it adds non-zero
cost. Refer [13] for the detailed definition.

In this paper, we extend the definition of energy to the
2C1P system by introducing camera-camera constraint as
follows:

E(T ) = E(T0) + E(T1) +
∑

(p0,p1)∈S

Xp0p1(tp0 , tp1), (3)

where Xp0p1(tp0 , tp1) is the regularization term for the
edges between cameras(p0, p1). This term is defined as
follows:

Xp0p1(tp0 , tp1) =

{
0 tp0 = tp1

µ otherwise,
(4)

Figure 4.A grid point tp has correspondences with points,p0 and
p1. Two 3D points,p3D0 andp3D1, are calculated by the two cor-
respondences. The depth for a pixelr is calculated by averaging
the depths,d0 andd1, if r is in the area close totp, which is repre-
sented byR. R is also used for creating a mask image for visibility
check in Sec.4.2.

whereµ is a user-defined constant. If a nodep has camera-
camera edges, the assignment oftp for the node tends to
be chosen from the ones with camera-camera edges, be-
cause the energy becomes large if the assignment without
camera-camera edges is chosen. The energy minimization
is accomplished by belief propagation [3].

4. Generating Dense Shape by Integrating Two
Cameras

The grid-based stereo in the previous section gives sparse
correspondences of the images of 2C1P system. The next
step is to generate dense shape by using the correspon-
dences. Since the assignments oftp for each grid pointp
represents the correspondence between a camera and a pro-
jector, two sets of point clouds can be calculated from the
two sets of camera-projector combination. However, the
accuracy can be improved by generating a single integrated
shape with two cameras and one projector. In this section,
we first merge the information of two cameras into a single
range image, and then optimize the range image by refin-
ing the correspondence for every pixel to generate a dense
shape.

4.1. Generating Single Range Image by Merging
Correspondence Information of Two Cameras

In the previous method with 1C1P system [13], a dense
range image was created by interpolating the grid graph in
the camera image. Now, we have two sets of grid graphs



on the 2C1P system. Since some parts of the graphs are oc-
cluded from the other camera, it is not possible to integrate
the information as a range image in the coordinate system
of one of the cameras. We therefore merge the information
in the coordinate system of the projector by reprojecting the
graphs from each camera.

Fig.4 shows the situation that a grid pointtp of the pro-
jector pattern has correspondences with points,p0 andp1, of
both two cameras. Two 3D points,p3D0 andp3D1, are cal-
culated by the two correspondences, which usually do not
coincide due to the error of image processing and calibra-
tion. We integrate the depths,d0 andd1, from the viewpoint
of the projector by averaging them. To generate a dense
range image, the depthdr for a pixelr is calculated as fol-
lows:

dr =
1

|R|
∑

(tp,p)∈R

d(tp, p), R = R0 ∪R1 (5)

Rk = {(tpk
, pk)|D(r, tpk

) < τ, pk ∈ Vk}, (6)

whered(tp, p) is the depth of the 3D points calculated by
triangulation oftp andp, andτ is a user-defined parameter
to determine the neighboring grid point. Since everyp3D
is visible from the projector, the depth information can be
merged without considering occlusion.

4.2. Optimizing Range Image with 2C1P System

Next, we optimize the depth by comparing the intensi-
ties at the corresponding points. Now, the depth at a point
r is dr, and the corresponding points of the cameras are
Pk(r, dr), (k = 0, 1). If we consider∆dr, which is the
small movement ofdr, the error of intensity is defined as
follows:

E(∆D) =

1∑
k=0

∑
r

(Ick(Pk(r, dr +∆dr))− Ip(r))
2 (7)

+ γ
∑
r

(dr +∆dr)−
1

|Q(r)|
∑

r′∈Q(r)

(dr′ +∆dr′)

2

,

where∆D is the set of∆dr, Ick(p) is the intensity of cam-
erak at pixelp, Ip(r) is the intensity of the projector pat-
tern at pixelr, andQ(r) is the set of neighboring pixels of
pixel r. The first term is the data term that compares the
intensities of camera and projector. The second term is the
regularization term defined by the discrete Laplacian ofr.
dr for each pixel is iteratively updated by adding∆dr that
minimizes the errorE(∆D).

Eq.(7) assumes that a 3D pointp3D calculated from the
point r and its depthdr is visible from both cameras. It is
however not true in an actual situation. Therefore, the vis-
ibility check is needed in this step. We introduce a mask

image corresponding to each camera in the projector coor-
dinate system. IfPk(r, dr) for camerak is in the valid area,
the data term is calculated for camerak, otherwise omitted
from E(∆D). The mask image is created during calculat-
ing the initial range image in Sec.4.1. The pixels inRk of
Eq.(6) are marked as valid for camerak.

5. Experiments

We have conducted experiments to confirm the effective-
ness of the proposed method. Since the contribution of this
paper is the improvements of robustness and accuracy, and
reducing occlusion compared to the previous method [13],
we experimented the proposed method to verify these im-
provements. In the experiments, we used global shutter
cameras of 1600× 1200 pixels that capture images at 30
frames/second, and a liquid crystal projector 1024× 768
pixels.

First, Fig.5 shows that the proposed method can effec-
tively use the projected pattern and reduce the occlusion in
the reconstructed shape. (a) and (b) are the input images
of camera 0 and 1 with two objects. The right plaster fig-
ure is almost completely occluded in camera 1. (c), (d),
and (e) are the results of reconstruction by using camera 0,
camera 1, and both cameras, respectively. The left side of
the mannequin is not reconstructed in (c), and the plaster
figure is not in (d) due to occlusion. Since the proposed
method merges the information of two cameras, the both
parts are successfully reconstructed. While objects are nec-
essary to be observed by both cameras in passive stereo sys-
tems, some of which use pattern projection, the proposed
method can reconstruct the parts that are observed by only
one camera because it is a structured-light system that re-
constructs shapes by a pair of one projector and one camera.

Next, we show that the robustness is improved by the
proposed method. In Fig.6, a cube-shaped object is recon-
structed. The cube is 0.2m on a side and the distance from
the cameras is about 1.7m. (a) and (b) are the input images
of two cameras. The pattern projected on the largely tilted
faces is compressed and difficult to find correspondences.
Therefore, the reconstructions by the 1C1P system, (c) and
(d), are failed at several parts of the faces. (e) is the result
of our 2C1P system. The proposed method succeeded to
reconstruct all three faces of the cube. We fitted a plane to
each face to evaluate the accuracy of measurements. While
the RMS errors are 0.411mm and 0.398mm for the 1C1P
methods with camera 0 and 1, respectively, the RMS error
of our 2C1P method is 0.331mm. The accuracy is improved
by using two cameras.

Next, we evaluated the accuracy by calculating the dif-
ference from the shape obtained by a close-range 3D scan-
ner, which have better accuracy. Fig.7 shows the difference
by color. The object is about at 2.0m from the cameras.
(a) and (b) are the results from the 1C1P and 2C1P meth-



(a) (b) (c) (d) (e)
Figure 5.(a) and (b) are the input images of camera 0 and 1 with two objects. The right plaster figure is almost completely occluded in
camera 1. (c), (d), and (e) are the results of reconstruction by using camera 0, camera 1, and both cameras, respectively.

(a) (b) (c) (d) (e)
Figure 6.(a) and (b) are the input images of two cameras. (c) and (d) are the reconstructions by the 1C1P system. (e) is the result by our
2C1P system.

ods, respectively. It can be recognized that the difference
in (b) is smaller than that in (a) by color. Since the RMS
differences are 2.63mm and 2.22mm for 1C1P and 2C1P
methods, respectively, it indicates the accuracy is improved
by the proposed method.

Next, Fig.8 shows an example of the extreme case that
the projector and cameras are at degenerated position. We
tested with two camera arrangements shown in Fig.8 (1).
The camera arrangement (a) is configured so that all the
epipolar lines and grid lines to not be parallel to avoid de-
generate position, whereas, the camera arrangement (b) is
at a degenerated position that one of the camera was set to
be parallel. Since the epipolar plane between camera 0 and
the projector is parallel to one of the wave line direction,
the wave line does not curve regardless of the shape of the
object. It means the connectivity of grid points given by the
wave line has no information, which causes the failure of
3D reconstruction by the 1C1P system [13].

The input images are shown in Fig.8(2) and (3). Since
the horizontal wave line is parallel to the epipolar line be-
tween camera 0 and the projector in the configuration (b),
the pattern observed by camera 0 does not curve. In this
case, the connectivity obtained by the horizontal pattern
does not have useful information, because it is trivial by
the epipolar geometry. Fig.8(4), (5) and (6) show the re-
constructed results from camera 0, camera 1, and from both
cameras, respectively. All the cases succeeded to recon-

Table 1.The number of correct/incorrect correspondences by us-
ing one camera or two cameras.

Num of 1C1P method 2C1P method
grid points correct incorrect correct incorrect

(a) 432 432 0 432 0
(b) 540 448 92 536 4

struct the shape of a sphere in the setup (a). While camera
0 in the setup (b) failed, the proposed method successfully
reconstructed the shape.

Table1 shows the statical result on detecting correct cor-
respondences of grid points for the cases in Fig.8. The
numbers of grid points are the sum of points detected on
camera 0 and 1. In the setup (a), the reconstructions by
both 1C1P and 2C1P systems find correct correspondences
from all grid points. In the setup (b), many incorrect cor-
respondences by the 1C1P method are chosen because of
the failure of camera 0. The number of incorrect correspon-
dences is significantly reduced by the 2C1P method, which
indicates that the correct correspondences are found even in
camera 0 of degenerated position.

Finally, Fig.9 shows an example of capturing a person in
motion. (a) and (b) are three frames of the input video of
camera 0 and 1, respectively. (c), (d), and (e) are the results
of reconstruction by using camera 0, camera 1, and both
cameras. In some cases, the 1C1P method fails to find the



(a) (b)
Figure 7.The differences from the shape obtained by a close-range
3D scanner are calculated. (a) and (b) are the results by the 1C1P
and 2C1P methods, respectively.

correct correspondence because of the inappropriate con-
figuration of the pattern. Wrong correspondences occur at
similar positions in different frames as shown by red cir-
cles in (c) and (d). Since the wrong correspondences are re-
duced by the 2C1P method, it shows the proposed method
improves the robustness to find the correct correspondence.

6. Conclusion

In this paper, we proposed an active 3D reconstruction
with two cameras and one projector (2C1P) system. The
system reconstructs the shapes from a single frame of each
camera by finding the correspondence between the cameras
and the projector based on projected wave grid pattern. We
introduced camera-camera constraint, which is represented
as an edge between the grid graphs detected in camera im-
ages, to extend the one-shot 1C1P method with the wave
grid pattern. Since the corresponding information of two
cameras is merged and optimized, it was shown in the ex-
periments that the proposed method contributes to reducing
occlusion, and improving robustness and accuracy. In future
work, we plan to extend the proposed method to capture the
entire shape of an object.
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(1) (2) (3) (4) (5) (6)
Camera Image of Image of Reconstructed Reconstructed Reconstructed
setup camera 0 camera 1 using camera 0 using camera 1 using both cameras

(a)

(b)

Figure 8.The proposed method (2C1P) is compared to 1C1P system with two different setups, (a) and (b). (a) is configured so that all the
epipolar lines and wave lines to not be parallel to avoid degenerate position, whereas, (b) is a degenerated setup that one of the camera was
set to be parallel. Therefore, the pattern observed by camera 0 does not curve in (b)-(2). All the cases succeeded to reconstruct the shape
of a sphere in the setup (a). While camera 0 in the setup (b) failed, the proposed method finds correct correspondences.

(a) (b) (c) (d) (e)
Figure 9.An example of capturing a person in motion: (a) and (b) are three frames of the input video of camera 0 and 1, respectively. (c),
(d), and (e) are the results of reconstruction by using camera 0, camera 1, and both cameras. Red circles indicate wrong correspondences.


