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Abstract

Underwater 3D shape scanning technique becomes pop-
ular because of several rising research topics, such as map
making of submarine topography for autonomous underwa-
ter vehicle (UAV), shape measurement of live fish, motion
capture of swimming human, etc. Structured light systems
(SLS) based active 3D scanning systems are widely used
in the air and also promising to apply underwater environ-
ment. When SLS is used in the air, the stereo correspon-
dences can be efficiently retrieved by epipolar constraint.
However, in the underwater environment, the camera and
projector are usually set in special housings and refraction
occurs at the interfaces between water/glass and glass/air,
resulting in invalid conditions for epipolar constraint which
severely deteriorates the correspondence search process. In
this paper, we propose an efficient technique to calibrate the
underwater SLS systems as well as robust 3D shape acquisi-
tion technique. In order to avoid the calculation complexity,
we approximate the system with central projection model.
Although such an approximation produces an inevitable er-
rors in the system, such errors are diminished by a combina-
tion of grid based SLS technique and a bundle adjustment
algorithm. We tested our method with a real underwater
SLS, consisting of custom-made laser pattern projector and
underwater housings, showing the validity of our method.

1. Introduction

Underwater 3D shape scanning system becomes impor-
tant because of various purposes, such as map making of
submarine topography, shape measurement of live fish, mo-
tion capture of swimming human and 3D sensor for au-
tonomous underwater vehicles (UAV). Structured light sys-
tems (SLS) based active 3D scanning systems are widely
used for various purposes in the air and are also promis-
ing for underwater environments. A typical SLS consists

of a camera and a projector where the projector projects an
encoded pattern onto an object’s surface, images of the ob-
ject are captured by the camera, and the images are decoded
to recover the 3D shape. Because the technique uses an
active pattern projector, the correspondence searching pro-
cess becomes stable by the unique and distinctive patterns,
resulting in accurate and dense reconstruction; this makes
SLS as popular non-contact 3D shape measurement meth-
ods [22, 7]. Among them, one-shot SLS recently attracts
many researchers because of its ability to scan dynamic ob-
jects [19, 2].

To apply the SLS to the underwater environment, sev-
eral issues arise. First one is a calibration. For SLS system,
usually the intrinsic parameters of the camera and projector
as well as the extrinsic parameters are calibrated by using
correspondences between a projected pattern from a pro-
jector and a captured image by cameras and the shape of
the target object. Such correspondence problem can be effi-
ciently solved by epipolar constraint in the air, whereas, the
constraint does not hold under the water and the correspon-
dence problem cannot be solved. Another issue is that since
common 3D reconstruction techniques are based on central
projection model, they cannot be applied to the underwater
environment.

In this paper, we propose three approaches to jointly
tackle the aforementioned issues. First, we introduce a
plane based calibration technique for underwater environ-
ment using AR markers [11] on the board to efficiently de-
tect the markers followed by a bundle adjustment to refine
the results. Second, to solve the problem of invalid epipolar
constraint, we approximate the system with central projec-
tion model at specific depth. Since the approximation pro-
duces an inevitable errors for searching correspondences,
we introduce a grid-based active scanning method, which
allows to find correspondences with some tolerance. Fi-
nally, we develop a 3D reconstruction algorithm for approx-
imated model, where initial errors are refined by bundle ad-



justment.

In the experiment, we tested and evaluate the effective-
ness of the proposed approach using the real system where
a projector and cameras are installed in special housings
and placed under the water. Currently, the test was con-
ducted at an aquarium pool where water quality is quite
good. Even at the aquarium, there are many demands for
capturing shapes of live swimming fish, for example, mea-
suring size for health check, acquiring shape deformation to
learn swimming mechanisms, etc. We also plan to use the
scanner in the sea where water quality is worse.

2. Related Work

Calibration models for underwater camera have been
proposed extensively [18, 4, 17, 1, 21, 15, 10, 9, 12].
However, none of them gives an entire calibration and re-
construction procedure for an SLS. Because of the corre-
spondence matching problem in SLS, some of the proposed
models becomes invalid since the formulated models do not
offer a practical strategy for matching and reconstruction.
Besides, projector calibration underwater is also a slightly
different issue than camera calibration due to the “blind-
ness” of the projector [5].

There are some early works for underwater 3D re-
construction based on approximation model [18, 4, 17].
Queiroz-Neto et al. proposed an underwater model which
simply ignores the effects of the refraction, but earns re-
sults with low accuracy due to the non-linear refraction
effect [18]. Some approximate methods also have been
proposed, such as focal length adjustment [18], lens ra-
dial distortion approximation [4] and a combination of the
two [17]. Unfortunately, the accuracy of these approxima-
tion models are also insufficient to an SLS system for cor-
respondence search using epipolar geometry.

To improve the accuracy of underwater measurement,
some physical models for camera calibration and recon-
struction have been proposed [1,21, 15, 10,9, 12]. Agrawal
et al. gives a general calibration method for underwater
cameras, based on a physical refractive model [1]. They
consider that all refractive planes are parallel to each other,
and they derive front-projection and back-projection equa-
tions for their refractive model. However, it is neces-
sary to solve 4th degree equations even for one refractive
plane’s case, and 12th degree equations in the 2 plane case
in a forward projection situation, and thus, it is difficult
to use this method directly for SLS. Sedlazeck et al. fo-
cus on the underwater light rays which are projected as
a curved surface: after learning this surface, perspective
projection can be done [21]. According to this method,
it is also difficult to tackle the forward projection prob-
lem due to the complicated learning phase. Kang et al.
and Sedlazeck also consider the underwater reconstruction
with Structure from Motion (SfM) [10, 9]. SfM is a pas-

sive way to recover 3D shape of objects, and it is difficult
to achieve a dense reconstruction result due to the difficulty
of the correspondence searching. Kawahara et.al. proposed
pixel-wise varifocal camera model, where the focal length
of the projection varies pixel-by-pixel, for modeling non-
central projection of an underwater camera, and a calibra-
tion method for the cameras [12]. They also proposed an
active-stereo system composed of a projector and two cam-
eras, where projection of the cameras and the projector is
based on their model [13]. Since image-based correspon-
dence search using epipolar lines are not valid for underwa-
ter cameras, they applied space carving method, where only
photo-consistency is needed.

In terms of SLS for underwater, Campos et al. proposed
an underwater active stereo system that uses a DOE-based
pattern projector [16]. They used a pattern of parallel lines
and each line is not coded into local features. Their decod-
ing method (i.e., the method for solving correspondences
between the captured image and the projected pattern) relies
on the order between the detected lines on the camera im-
age, thus, ambiguity may occur if only a small region of the
pattern is detected. Morinaga et al. also proposed the active
scanning technique using DOE with grid pattern, however,
underwater calibration technique is not mentioned [8].

3. Underwater active one-shot scanning system
3.1. System configuration

To use SLS, which consists of a camera and a projector
in the underwater environment, the camera and the projector
are set into housings, respectively. In addition, we assume
that all the cameras are synchronized; note that since the
pattern is static, no synchronization is required for a projec-
tor. The actual configuration is shown in Fig. 1. We made a
waterproof housing as shown in Fig. 2. Left and right hous-
ings are for the cameras, while the center housing is for
the laser projector with a diffractive optical element (DOE)
of a wave pattern; note that energy efficiency of DOE is
normally more than 90% and suitable for outdoor environ-
ment such as murky water in the sea. One severe problem
of DOE is that it can project just a static pattern, and thus,
applicable SLS technique is limited; we adopt a grid based
technique [20] because of advantages on stability and accu-
racy. We made our system with two cameras because of the
following reasons:

1. It is possible to reconstruct areas which are occluded
with one camera, thereby reconstructing a wider area
than with conventional monocular camera system.

2. Since projector cannot capture image, bundle adjust-
ment which minimize reprojection error cannot be ap-
plied without multiple cameras in real sense.
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Figure 1. Set up of camera projector camera system in water proof
housing.

Figure 2. Real underwater scanning system with two cameras and
one DOE laser projector.

3.2. Algorithm overview

Our system consists of mainly two parts, such as calibra-
tion part and 3D shape reconstruction part. In the calibra-
tion part, we first calibrate the camera intrinsic parameter in
the air. Then, we submerge the system into the water and
calibrate the system as if it is in the air, i.e. we calibrate
the system by using central projection model. Since optical
mode in the water is not central projection because of re-
fraction, inevitable errors occur and they must be compen-
sated. In our method, they are “undistorted” by polynomial
approximation. By applying the polynomial approximation,
we have new images with pseudo central projection. Once
we get such a central projection images, epipolar constraint
holds and correspondences can be efficiently retrieved with
some tolerance. Using the correspondences, real intrinsic
and extrinsic of the projector parameters as well as param-
eters for underwater conditions, such as distance and orien-
tation of the interface of air/water, are estimated by bundle
adjustment.

In the reconstruction part, we adopt a two-step approach.
First, the approximated central projection model is used
to perform the wave grid reconstruction to retrieve initial
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Figure 3. Calibration process in the water.

shape. Then, the estimated 3D points are refined by bundle
adjustment using an accurate non-central projection model,
which takes into account the refraction. The reason why
we need the approximation model for the first step is that a
central projection model is not true in the underwater envi-
ronment, that means epipolar constraint does not hold, how-
ever, the epipolar constraint is a key to efficiently find the
correspondences with active stereo techniques. Although
certain error inevitably occurs with approximation model,
they are corrected during the refinement process.

4. Underwater calibration using a planar
board

A calibration work-flow is shown in Fig. 3. In the
method, first the intrinsic parameters of cameras are esti-
mated by using a planer board in the air [23]. After that,
the camera and projector are put into their respective hous-
ings and placed under the water. Finally, the intrinsic and
the extrinsic parameters of calibration board as well as the
housing parameters are estimated.

4.1. Refraction approximated by polynomial equa-
tion

Let us consider the full physical refraction model first.
We suppose that a camera and a projector are all set into
housings respectively, and assume that the housings’ thick-
nesses can be ignored. Based on Snell’s law, the following
equations are obtained.
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where coordinate x shows the refractive plane, the refractive
indices of the media above and below this plane are 1 and
L2 respectively, b is a 3D point where a ray coming from,
p1 = (x1,0) is a point on the interface, d is the distance be-
tween the b and camera plane, y.. is the focus of camera, « is

the angle of the ray and [ is the angle after refraction. After
some manipulation, the next equation can be obtained [1],
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By solving this 4th order equation, the corresponding epipo-
lar line on the plane of projector pattern with predefined
depth can be calculated for each feature points.

In this paper, we propose a polynomial approximation
of the full physical refraction model by using the following
equation.

B(z1) = a1r® 4 agr?, (€))

where r is the distance from the intersection between the
optical axis and the interface. Since the equation is same as
the lens distortion model, we simply apply openCV library
to estimate the parameters; note that the parameter is depth
dependent and only valid within a specific depth range.

4.2. Pattern separation and correspondence esti-
mation

Then, a planar board where special markers are printed
is projected by the grid pattern projector and captured by
the camera. All the captured images are undistorted by the
polynomial equation where parameters are estimated in the
previous section to be approximated as a central projection
model. Those images are separated into two by using color
information as shown in Fig. 5 (b) and (c). Then, the in-
trinsic and extrinsic parameters of cameras are estimated by
a planar board calibration technique [23] as if they are in
the air. Since the board is projected by a pattern projector,
a strong highlight is usually observed interfering a stable
detection of checker board pattern. Since the standard algo-
rithm such as openCV [3] requires entire pattern detection
for calibration, a highlight is a critical problem. In the pa-
per, we use multiple AR markers [11] instead of checker
pattern to realize independent marker detection as shown in
Fig. 5 (d). Once markers are detected with several frames, a
camera’s intrinsic and extrinsic parameters can be estimated
efficiently. Note that the estimated parameters are not phys-
ically correct, however can be used for further process to
find correspondences.

Next, correspondences between a projector pattern and
a captured image are estimated. Since a projector cannot
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Figure 4. Calibration pattern with AR markers. Minimum Ham-

ming distance is 5.
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Figure 5. (a) captured image, (b)(c) separated patterns with color
information and (d)(e) feature detected results.

capture an image, correspondences should be relatively re-
trieved by other means. Simple solution is to switching
the projected pattern to encode positional information into
temporal domain. However, since a static pattern projec-
tor is used in our system, such an approach cannot be used
and another solution is required. To solve the problem, we
take a two step approach, such as a sphere based calibra-
tion which requires manual intervention [6] to estimate the
initial parameters and a grid-based oneshot scan using the
parameters to retrieve dense correspondences. Note that,



since only a single image is required for sphere-based cali-
bration, it is efficient that it makes possible to retrieve dense
correspondences from 20-40 frames automatically.

A sphere-based calibration process is as follows. First,
images are captured where the sphere is projected by the
grid pattern. From the image, points on the spherical con-
tour are sampled manually. Also, the correspondences be-
tween the grid points on the camera image and the grid
points on the projected pattern are assigned manually. Then,
reprojection errors between the captured grid points on the
sphere and the simulated grid positions are minimized with
respect to the extrinsic parameters, the intrinsic parameters
of the projector, and the position of the calibration sphere.
Other than the reprojection errors, points on the spherical
contour are also used for the optimization. Again, since
single image is sufficient for sphere-based calibration, it is
not a heavy task.

Once we get the initial parameters by the calibration,
we can use epipolar constraint to find correspondences ef-
ficiently. Since our system uses wave-grid pattern for pro-
jection [20], we can retrieve the correspondences using the
same 3D reconstruction algorithm and results are shown in
Fig. 5(e) red points. We can confirm that dense correspon-
dences are estimated.

4.3. Projector intrinsic/extrinsic and housing pa-
rameters estimation

In the previous step, the intrinsic and extrinsic param-
eters for each camera and projector is estimated, however,
they are based on approximated central projection model.
To estimate the real parameters, we conduct bundle adjust-
ment using the retrieved correspondences. For evaluating
errors for bundle adjustment, the back projected 3D points
from projector in camera coordinate system are reprojected
to camera planes by using the intrinsic parameter of projec-
tor A, extrinsic parameters between projector and the kth
camera 6 = (Ry,tx), extrinsic parameters 6; for planar
board at frame 4, and housing parameters ¢ = (7iy,dy)
as shown in Fig. 6. The sum of squares of each distance
between each projected point and corresponding detected
point on the camera plane is calculated by the following
equation:

argmin Z Reproj(Or, ¢r, Proj(0s, bp, pij)) — cijk,
A,0;,0k,br,0p
5)

where p;; is the jth point on the ith frame of projector pat-
tern, ¢; ;1 is the corresponding points on the captured image
of the kth camera, Proj(6;, ¢p, ) is a function to calculate
3D position on the board ¢, and Reproj(0y, ¢x, X) is the
4th oder equation (3) to calculate the reprojection on a cam-
era plane considering refraction. In the paper, we use the
Levenberg-Marquardt algorithm for optimization.
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Figure 6. Positions of glasses (d and 77) are estimated through cal-
ibration process in the water.
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Figure 7. (a) Corresponding point and (b) Epipolar line for (a).

5. Oneshot 3D reconstruction under the water
5.1. Wave grid reconstruction

For 3D reconstruction, it is necessary to find matches
between points on the image plane and the known projector
pattern. In our method, we use a “wave pattern” because
of the distinctiveness and uniqueness of its features and its
reconstruction density [20]. Fig. 7 is an example of the pat-
tern. The correspondences are found through an epipolar
search. During the search, the impact of our polynomial
approximation on accuracy is limited since the interval be-
tween intersections in the wave grid is much larger than the
pixel width, and an error of a few pixels does not affect the
correspondence search. This feature is important for our un-
derwater scanning method because the polynomial approx-
imation inevitably will create some errors on the epipolar
lines. Since the reconstructed results have some errors be-
cause of approximation model and inconsistent shapes be-
cause of depth dependent calibration parameters, those er-
rors are effectively solved in the refinement process.

5.2. Refinement with bundle adjustment

Refinement of 3D shape will be conducted by the fol-
lowing way. We set 3D points to be estimated with bundle
adjustment. Since we can retrieve a hundred of correspond-
ing points between camera and projector image through the



wave reconstruction process, we can calculate the reprojec-
tion error by simply solving the fourth order polynomial
equation (3).

Since we can start the optimization from the initial shape
calculated by the approximated model, it converges quickly
with Leaven-Marquardt algorithm with our implementa-
tion. It should be noted that, since the images are undis-
torted by the parameter of approximation model in the un-
derwater environment to retrieve the initial shape, the image
is needed again distorted by the approximation parameters
and undistorted by ordinary distortion parameters which are
estimated by openCV in the air before the bundle adjust-
ment.

6. Experiments

6.1. Real system calibration

Figure 8. Experimental environment of underwater scan.

First, we conducted the underwater calibration process
with the real environment as shown in Fig. 8. Camera we
use is Grasshopper with resolution 1600*1200, and special
pattern projector using diffractive optical element (DOE).
AR marker printed planar board for calibration is set at the
distance near 0.8m from the camera and the projector, and
for each orientation, we just adjust the angle of the pla-
nar board but keep the position of it. Before submerging
the system into the tank, we take 50 pictures of the pla-
nar board for calibrating the camera-projector system in air,
and estimate the intrinsic and extrinsic parameters of the
camera and projector [14]. After that, the system was put
injected into the tank. We took 50 pictures for calibrating
the system underwater as shown in Fig. 9(a) and (b) and
estimate the extrinsic parameters, the polynomial approxi-
mation parameters and position of the housing glass at this
time. The final calibration result after optimization is 0.74
of re-projection error for camera, and 0.53 pix for projector
as shown in Fig. 10 where we can confirm that the repro-
jection error is drastically decreased after optimization. We

(© (d) ©)
Figure 9. (a) and (b) captured scenes of planar board with AR
marker and (c)-(e) reconstructed shapes after estimation of the
extrinsic parameters of each board with bundle adjustment algo-
rithm.
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Figure 10. Reprojection of camera and projector image. Blue: ob-
served points and Red: reprojected points.

can also confirm That the estimated planer board is almost
flat in Fig. 9(c-e) verifying our calibration process.

6.2. Shape refinement by bundle algorithm

Then, we captured and reconstructed the 3D shape of
a sphere and swimming fish using wave reconstruction.
Fig. 11(a)(b)(g) and (h) shows the example of captured im-
age and Fig. 11(c)(d)(i) and (j) shows a reconstruction re-
sults. Since two cameras are used for our system and both
cameras are calibrated independently, reconstructed shapes
for each camera do not coincide as we can see in the re-
sults. Such gap can be eliminated and integrated with our
refinement algorithm. As shown in Fig. 11(e)(f)(k) and (1),
we can confirm that the our refinement algorithm success-
fully integrate two shapes into single consistent shape. For
quantitative evaluation, we calculate RMSE for the planar
board by fitting the plane to the board and it was drastically
decreased from 9.7mm to 0.7mm, confirming the effective-
ness of our algorithm.
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Figure 11. Captured images and reconstruction results of the
sphere and the mannequin. (a)(b)(g)(h) Captured images by left
and right camera. (c)(d)(i)(j) White shapes are reconstructed by
left camera and red shapes are reconstructed by right camera.
(e)(H)(k)(1) Light blue shapes are integrated shapes with bundle ad-
just algorithm.
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Figure 12. Reconstructed shapes with/without bundle adjustment.
The left figures are before bundle adjustment and the right figures
are after bundle adjustment. We can clearly see that shapes are
getting closer to the ground truth with a bundle adjustment.
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Figure 13. Shape accuracies before and after refinement process of
section 5.2.

6.3. Evaluation of 3D shape improvements by re-
finement

Next, we evaluated accuracies of the 3D shapes before
and after the refinement process of section 5.2. We mea-
sured three types of shapes, which are a set of planes, a ball,
and a mannequin. Distances from the camera and the ob-
jects are around 500mm for all the cases. Their shapes are
reconstructed as shown in Fig. 12. Then, the shape accura-
cies of intermediate and final results are evaluated. For the
set of planes, the reconstructed points are fitted to planes by
PCA, and the residual RMSEs are calculated. For the sphere
and the mannequin shape, the ground-truth shape data are
fitted to the reconstructed point sets using ICP algorithm,
and the residual RMSEs of the ICP is used for evaluation.
The ground-truth shape of the sphere is synthetically gen-
erated, whereas the ground-truth shape of the mannequin
is captured in advance using gray code projection in the air.
The results are shown in Fig. 13. From the results, the shape
RMSEs of the final results are shown to be small (less than
0.5mm for the bast case, and about 2.5mm for the worst
case). For all the cases, the residual errors from the ground-
truth shapes are improved by the refinement process.
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Figure 14. Captured images and reconstruction results of the live
swimming fish. (a)(b) Captured images by left and right cam-
era. (c)(d) White shapes are reconstructed by left camera and red
shapes are reconstructed by right camera. (e)(f) Light blue shapes
are integrated shapes with bundle adjust algorithm.

6.4. Example results of scanning fish

Finally, we captured live fishes in the pool at aquar-
ium. Since our technique requires just a single shot for
reconstruction, non-rigid and moving shapes can be recon-
structed. We believe that there is no other systems which
can reconstruct a swimming fish in underwater environ-
ment. Fig. 14 show the captured images from the left and
right cameras and their reconstruction results. Fig. 15 show
the results of swimming fish. Left column shows a sequence
of captured images and right column shows reconstructed
shapes. From the results, we can confirm that the swim-
ming fish is successfully reconstructed.

7. Conclusion and Future Work

In this paper, we propose a practical calibration tech-
nique to apply oneshot active 3D scanning method in the
underwater environment. To realize the system, we propose
three solutions. First, we calibrate the camera and projector
parameters with polynomial approximation as well as pla-
nar board based calibration technique. Then, shapes are re-
constructed by wave reconstruction which allows inevitable
errors in epipolar geometry. Finally, 3D shapes are refined
by the bundle adjustment algorithm which calculates the ac-
tual 2D position on the image plane by solving the fourth
order polynomial of physical model. Experiments are con-
ducted with real environment showing the effectiveness of

Swimming fish sequence

Sturgeon

Bonito
Figure 15. Captured scene (left column) and reconstructed 3D
shapes (right column).

our method. Robust reconstruction technique under water
environment is our future work.
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