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Abstract. For effective in situ endoscopic diagnosis and treatment, dense
and large areal shape reconstruction is important. For this purpose, we
develop 3D endoscopic systems based on active stereo, which projects
a grid pattern where grid points are coded by line gaps. One problem
of the previous works was that success or failure of 3D reconstruction
depends on the stability of feature extraction from the images captured
by the endoscope camera. Subsurface scattering or specularities on bio-
tissues make this problem difficult. Another problem was that shape
reconstruction area was relatively small because of limited field of view
of the pattern projector compared to that of the camera. In this paper,
to solve the first problem, learning-based approach, i.e., U-Nets, for effi-
cient detection of grid lines and codes at the detected grid points under
severe conditions, is proposed. To solve the second problem, an online
shape-registration and merging algorithm for sequential frames is pro-
posed. In the experiments, we have shown that we can train U-Nets to
extract those features effectively for three specimens of cancers, and also
conducted 3D scanning of shapes of a stomach phantom model and a sur-
face inside a human mouth, in which wide-area surfaces are successfully
recovered by shape registration and merging.

1 INTRODUCTION

Endoscopic diagnosis and treatment on digestive tracts have become popular
and widespread because of effectiveness on finding tumors in early-stage or little
suffering on surgery. For this reason, an easy to deploy, accurate tumor size
estimation technique is required for endoscopic systems and has been intensively
researched. On our continuous works on the development of a 3D endoscope
system to automatically measure the shape and size of living tissue based on
active stereo, we made non-contact measurement systems by making ultra-small
projectors which are possible to be inserted through the instrument channel of
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ordinary endoscopes [1–5]. Using those devices, we have successfully measured
several ex vivo human tumor samples. One significant limitation of the current
systems is that it easily fails to recover shapes because of strong subsurface
scattering and specular effects which is common in internal tissue. Another issue
is that shape reconstruction area was relatively small because of limited field of
view of pattern projector compared to that of the camera of the endoscope.

In this paper, to solve the pattern detection problems caused by complicated
surface reluctances, such as sub-surface scattering and specularities, we propose
a learning-based approach, which is based on CNNs (convolutional neural net-
works). To apply CNN to oneshot scan, we used two types of U-Nets for line
detections (horizontal and vertical) and code detection, since each of the tasks
is simplified and easy to learn. Then, at a decoding phase, two outputs of the
U-Nets from the single captured image are integrated to make the final output,
i.e., detected lines with ID. Using the final output, 3D shapes are reconstructed
by light sectioning method using decoded IDs.

Since each region of reconstruction is small, online shape-registration and
merging algorithm for sequential frames is required to recover the wide structures
of the entire shape. For the purpose, we propose a shape registration and merging
algorithm in the paper. In the method, we introduce RBF-based shape densifing
algorithm to fill holes between grid lines. Then, ICP based registration is applied
followed by incremental fusion of the shape of each frame to the global space,
i.e., TSDF in our technique. Final shapes are reconstructed by marching cubes
algorithm.

In the experiments, a learning-based technique is evaluated by comparing
several real tissues with previous techniques [5], proving the effectiveness of our
method. Then, our online shape-registration and merging algorithm is applied
to a shape model, i.e., phantom model, of a stomach and a part of a real human
body, i.e., inside mouth, to show the successful results of the technique.

2 RELATED WORK

For 3D reconstruction method using endoscopes, techniques using shape from
shading (SFS) [6] or binocular stereo [7] have been proposed. However, these
techniques often have stringent assumptions on the images that can be pro-
cessed, or, in the case of binocular stereo, require specialized endoscopes. As
an example of active stereo applications in endoscopy, in [8] a single-line laser
scanner attached to the head of the scope was used to measure tissue shapes,
however, the scope head needed to be directed in parallel to the target, which
limited the practical applicability of the technique. Lin et al. proposed 3D en-
doscope system using colored, middle-sized circle dots [9]. Compared to their
work, our system uses structured light composed of sharp lines, which can be
used for accurate 3D reconstruction using light sectioning triangulation. This is
important for obtaining small shape details of the target. Recently, Furukawa
et al. extended their grid pattern based active stereo system by using DOE
(diffractive optical element) with “gap coding” technique solving typical issues
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Fig. 1. The system configuration (the left image), the DOE pattern projector (the
middle column), and the projected pattern (the right column). The images of the
middle column are the appearance of the projector (inserted through the instrument
channel) and the pattern illumination projected on a white wall. The images of the
right column are the projected pattern and the codewords embedded into the pattern,
where S colored in red, L in blue, and R in green. S means edges of the left and the
right sides have the same height, L means the left side is higher, and R means the right
is higher.

for endoscopic systems [4, 5]. This paper solves practical issues for applying the
technique to real bio tissues.

For integrating multiple shapes, registering multiple shapes by ICP algo-
rithm[10] has been a widely-used solution. Similarly, signed distance field (SDF)
representation has been widely used for fusing multiple shapes[11]. Recently,
KinectFusion[12] integrates those methods so that online shape reconstruction
can be realized, where sequentially-captured 3D shapes are incrementally regis-
tered and fused into a single model.

3 Overview

3.1 System configuration

A projector-camera system is constructed by inserting a fiber-shaped, micro
pattern projector into the instrument channel of a standard endoscope as shown
in Fig. 1. For our system, we used a FujiFilm VP-4450HD system coupled with
a EG-590WR scope. The DOE-based pattern projector is inserted through the
instrument channel of the endoscope the projector slightly protrudes from the
endoscope head as shown in Fig. 1 and emits the structured light.

The light source of the projector is a green laser module with a wavelength
of 517nm. The laser light is transmitted through a single-mode optical fiber to
the head of the DOE projector. In the head, the light is collimated by grin lens,
and go through the DOE. The DOE can project a fine, complex pattern at a
greater depth range.
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In terms of pattern design, we use a grid pattern with gapped lines, whose
features are reported to be robust to blurring [4]. The pattern is shown in Fig. 1.
The vertical lines of the pattern are all connected and straight, whereas the
horizontal line segments are designed so that adjacent line segments have variable
vertical gaps at the grid points. With this configuration, a higher-level ternary
code emerges from the design with the following three codewords: S (the end-
points of both sides have the same height), L (the end-point of the left side is
higher), and R (the end-point of the left side is higher). The codes of the pattern
of Fig. 1 (right column, top) are shown by color in Fig. 1 (right column, bottom).

Since the vertical lines of the pattern are straight lines, we can apply light
sectioning method for 3D triangulation using these lines. By using light section-
ing method, we can get accurate 3D points on these lines, which is important
for capturing small details of the target surface.

3.2 Algorithm overview

We record sequence of images captured by the endoscope camera, while project-
ing the structured light shown in Fig. 1. Then, every image the captured sequence
is analyzed to obtain shape information of the frame. The reconstructed shapes
are 3D curves corresponding to the vertical lines of the grid pattern. Since the 3D
curves are sparse, we convert the shape information to frame-wise depth images,
then, process the depth images with the KinectFusion algorithm.

The 3D reconstruction of each frame consists of two stages, such as pattern
decoding stage and 3D reconstruction stage as shown in Fig. 2. The pattern
decoding stage is processed by CNNs, which are trained to extract grid-like
structures, and the gap codes in the captured images. In the 3D reconstruction
stage, the extracted grid structures and code information are analyzed, and the
IDs of all the detected vertical lines are decided, and 3D curves are reconstructed
by light-sectioning method.

For training CNNs (learning phase in Fig. 2), actual patterns are projected
onto the strong subsurface scattering objects and captured by a camera. Then,
correct lines and code IDs are manually given as the ground truth. It is a tough
task even for humans, thus, learning data augmentations such as image transla-
tions or rotations are used to decrease the burden. Then, parameters and kernels
of U-Net [13] are estimated for lines and IDs independently using deep learning
framework so that cost functions are minimized. The cost function is basically
a difference between an output of U-Net and the ground truth.

In the decoding phase, the captured image is first applied to CNNs for ver-
tical and horizontal line detections. At the same time, the image is also applied
to CNN for region-wise classification of local feature codes embedded into the
pattern. Then, both results are combined to produce final output, i.e., detected
lines with estimated local codes in the pattern. By using the image with de-
tected lines with pattern ID as the input, 3D shapes are recovered in the 3D
reconstruction stage. Since a single local code is not sufficient for unique deci-
sion of correspondences, information of connectivity and the epipolar constraints
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Fig. 2. Overview of CNN-based decoding and 3D reconstruction for oneshot scan. Note
that we have two CNNs for vertical and horizontal line detections, and another CNN
for decoding IDs of grid points.

are used with a voting scheme to increase robustness, similarly as [14]. Once cor-
respondences of the detected curves are retrieved, 3D shapes are reconstructed
by light sectioning method.

Since many of the KinectFusion implementations require depth images, we
generate depth images from the sparse 3D curves. Then, the depth images are
processed by KinectFusion algorithm. Within the module, the depth images
are fused to a volume, where shapes are represented as TSDF (truncated signed
distance field). Once all the frames are fused into one volume, the module outputs
the fused surface.

4 CNN-based feature detection and decoding for active
stereo

A major feature of the projected pattern is a grid-like structure and discrete
codes given to each grid point. The grid-like structure is composed of vertical
and horizontal line segments. In the pattern, a discrete feature (gap code) is
attached to each of the grid point represented by the level gap between the left
and right edges of the grid point. The classes of the code are either of S / L / R
as shown in Fig. 1 (right column, bottom).

We extract grid-structure and gap-code information using U-Nets [13]. We
use U-Nets because this network structure can use global image structures to
detect local image features. Because the projected pattern has global structure
of grid, we can expect U-Nets use this structure information for detecting local
line features to improve performance.

4.1 Detection of grid structures

The training process of a U-Net for detecting vertical lines is as follows. First,
image samples of the pattern-illuminated scene is collected. Then, the vertical
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Fig. 3. Training data for U-Nets: (a) An example of captured pattern. (b) Manually
annotated vertical line. (c) Manually annotated horizontal line. (d) Training labels for
horizontal-line detection. (f) Manually annotated gap codes. (g) Training labels for
code detection. In the training data for horizontal-line detection, the discontinuity at
the grid points are intentionally connected in the training data. In the training data for
code detection, background pixels are treated as “don’t care” data for the loss function.

line locations for the image samples are designated manually as curves of 1-dot
widths. The 1-dot width curves such as shown in Fig. 3(b) and (d) are too sparse
and narrow to be directly used as regions of training data. Thus, regions with
5-dot width of left and right side of the thin curves are extracted, and labeled
as 1 and 2, respectively, as shown in Fig. 3 (c) and (e). The rest of the pixels are
labeled as 0. These 3 labeled images are used as training data. Then, a U-Net
is trained to produce such labeled regions using the loss function of the softmax
entropy between the 3-labeled training data and the 3-D feature map produced
by the trained U-Net.

By applying the trained U-Net to the image, we can get the 3-labeled image,
where left and right side of the vertical curves are labeled as 1 and 2, respectively.
Thus, by extracting the 2 horizontally-adjacent pixels where the left is 1 and
the right is 2, and connecting those pixels vertically, vertical curve detection is
achieved.

The horizontal curve detection is achieved similarly. However, the horizontal
edges may be disconnected due to the gaps at the grid points. Even in those
cases, training data is provided as continuous curves that go through the center
point of the gaps as shown in Fig. 3(e). By optimizing a U-Net using such training
data, we can expect results where horizontal curves are detected as continuous
at grid points, even if they are actually disconnected by gap codes.

An advantage of using U-Net for line detection of the grid structure is that the
U-Net can be implicitly trained to use not only local intensity variation, but also
more global information such as repetitive information of grid-like structures. A
supporting evidence, that we have experienced is that, if we process an image
sample that is scaled so that the training image set does not include the similarly-
scaled images, the line-detection performance noticeably worsens.
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4.2 Detection of pattern codes

In the proposed method, identification of gap codes is processed by directly
applying U-Net to the image signal, not from the line detection results. Thus,
the gap code estimation does not depend on line segment detection, which is
advantageous for stable detection of gap codes. Note that such a direct method
is not easy to implement by conventional image processing.

The training data generation is shown in Fig. 3(bottom row). In the training
process, the white background pixels of Fig. 3(bottom row, right column) are
treated as “don’t care” regions.

The advantage of directly detecting the pattern code is that the stability of
the code detection. Since, in the previous work [14], identification of gap codes
have been achieved by using results of line detection, failure of line detection or
failure of grid-structure analysis consequently leads to code-detection failures.
The proposed method is free from such problems of sequential processing.

5 Registration and fusing multiple captured frames

For the KinectFusion implementation, we use Kinfu module of point cloud li-
brary[16]. Since this module requires depth images for inputs, we generate depth
images from the sparse 3D curves.

To convert the sparse 3D curves into a dense depth image, we use Radial
basis function for interpolation of the 3D curves. Radial basis function (RBF)
has been a common tool for 3D shape interpolation from point sets [15]. In
the case of the proposed system, we only require 2D depth map for the camera
viewpoint of the frame, not a general 3D shape; thus, the problem becomes much
simpler.

First, the reconstructed 3D curves are stored in 2D maps in camera view.
Then, for each 3D point on the curves, a tangent plane is estimated by fitting
the neighbor point set (neighbor points are defined by 2D distances on the 2D
view) to a 2D plane by 2D linear regression.

Then, the tangent planes of all the curve points are fused using the weights
of the radial basis function. In the proposed system we use 2D Gaussian kernel
for the RBF. The resulting height function h(x, y) is

h(x, y) =

∑
i k(x− xi, y − yi){ai(x− xi) + bi(y − yi) + zi}∑

i k(x− xi, y − yi)
, (1)

where k(x, y) is an RBF kernel defined by k(x, y) = exp(−x
2+y2

2σ2 ), (xi, yi) is the
2D position of the i-th point in the camera view, zi is the depth of the i-th point
from the camera view, ai and bi are the coefficients of the tangent plane fit by
the linear regression, σ is a scale parameter of RBF. In our case, we set this value
to about average apparent size of the grid in captured images. We calculate the
value of (1) for each pixel of the depth image.

Then, the depth images are processed by KinectFusion algorithm. We used
Kinfu module of PCL (point cloud library)[16]. The view pose of the depth image



8

(a) (b) (c)

(d) (e) (f) (g)

Fig. 4. Grid and code detection results for a specimen of a cancer: (a): The appearance
of the sample. (b) The captured image. (c) U-Net output for horizontal-line detection.
(d) U-Net output of code detection. (e) Extracted grid-structures and codes. Compare
(e) with pattern codes shown in Fig. 1. The counted error rate of (e) was 4.5%. (f)
Grid-structures and codes extracted by a previous method[4]. Compare (f) with Fig. 1.
The counted error rate of (f) was 18.6%. (g) The reconstructed 3D shape.

is registered with the volume 3D shape represented as TSDF by ICP algorithm
using depth error and normal error criterion. Then the depth data is fused into
the TSDF. The fused points are extracted after all the frames are processed.

6 Experiment

6.1 Evaluation of CNN based line detection

To show effectiveness of the proposed pattern-feature extraction for endoscope
images, we measured specimens of cancers that are resected from patients. The
appearance, captured image by the 3D endoscope, outputs of the U-Nets for line
detection and code labels are shown in Fig. 4(a)-(d) respectively. The grid struc-
tures and codes that are extracted from the U-Net results are shown in Fig. 4(e).
For comparison, grid-structures and codes detected by a previous method [4] are
shown in Fig. 4(f). The 3D reconstruction results of this sample are shown in
Fig. 4(g). Although the captured image (Fig. 4(b)) is low-resolution and includes
significant noises, the extracted grid structure (Fig. 4(e)) is stable. By comparing
Fig. 4(e) with Fig. 1(right column, bottom), we can confirm that the gap codes
extracted by the U-Net is reasonably accurate. The manually counted code-
detection error rate of Fig. 4(e) was 4.5%, whereas that of the result of baseline
method[4] (Fig. 4(e)) was 18.6%. Using the decoded pattern, the 3D shape of
the pattern-projected regions are mostly reconstructed as shown in Fig. 4(f).

Grid and code extraction results for other two specimens are shown in Fig. 5,
where (a) and (d) are the captured images, (b) and (e) are the extracted grid and
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Fig. 5. Grid and code detection results for two specimens of cancers: (a,d) Captured
images. (b,e) Extracted grid-structures and codes. (e,f) Magnified regions of (b) and
(e), and the corresponding pattern regions.

code structures, and (c) and (f) are the magnified code structures and the corre-
sponding pattern regions. The regions of (c) and (f) are shown as cyan rectangles
of in (b) and (e). The specimen of (a-c) was was affected by strong subsurface
scattering, however, the extracted codes were reasonably accurate. The image
(d) has highly affected by highlights, and the grid structure was missing at the
saturated area itself. However, the grids and codes around the saturated area
became accurate enough so that the 3D shape can be successfully reconstructed.
Those results confirm the stability of our feature-extraction method even if the
data condition is low.

6.2 Simultaneous localization and 3D mapping

Then, we apply our online shape registration and merging algorithm to both a
phantom model of a stomach and a part of a real human body, i.e., inside a
mouth. About calibration, we pre-calibrated the projector-camera system using
sphere-based calibration [2].

We first captured shapes of the stomach model for evaluation purpose. Re-
sults are shown in Fig. 6. In Fig. 6(a), the area of the recovered shape from a
frame of the captured sequence is shown by the red rectangle. Fig. 6(b) is the
captured image of the red rectangle where the grid pattern is projected to the
surface. In the image, we can observe that grid lines are disconnected by the
complicated shape of the surface of the model, however, curves and IDs detected
by our method resulting in grids and codes shown in Fig. 6(c). The integrated
shape generated by the online registration and merging algorithm is shown in
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Fig. 6. An example of capturing a phantom model of a stomach: (a)The appearance of
the phantom model. (b)A captured image of red rectangle in (a). (c) The CNN result
of grid and code detection of (b). Compare (c) with Fig. 1. (d) Fused shape (the region
of blue polygon in (a)).

Fig. 6(d). We can confirm that a large area is successfully recovered as well as
keeping high-frequency shape details. For quantitative evaluation, we compared
distances between corresponding points shown in Fig. 6(a) and (d), as shown in
Table 1.

Table 1. Estimated and true distances between points shown in Fig. 6.

Real size Estimated size

Distance between two points in Fig. 6 67mm 63mm

Finally, we captured shapes inside a mouth of a human. A captured image,
the pattern detection result, the single-frame shape from the shown image, and
the final integrated shape are shown in Fig. 7. With this experiments, we can
confirm that the grid-structure and codes are robustly detected even with live
tissues captured by an ordinary endoscopic system. In addition, a large area
is successfully recovered without losing high-frequency shape details, which are
clearly observed in Fig. 7(h) where small shape details in the top (a subimage
of (a)) is also shown in the right 3D CG shading results (a subimage of (d)).
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Fig. 7. An example of capturing surfaces inside a mouth: (a) A captured image. (b)
The extracted grid-structures and codes of (a). Compare (b) with Fig. 1. (c) The
reconstructed shape from (a). (d) The merged shape. (e) Small shape details restored
by shape fusion(top: subimage of(a), bottom: subimage of (d)). (f) The merged shape
from another viewpoint.

7 Conclusion

This paper proposed a CNN-based grid pattern detection algorithm for active
stereo to solve pattern degradation problem caused by subsurface scattering and
specularities. Two independent networks, i.e.U-Nets, are constructed and trained
for both line detection and code based segmentation purposes, respectively. They
are integrated to retrieve robust and accurate line detection results with pattern
IDs. With our experiments using several target objects with strong subsurface
scattering and specular effects, the proposed method shows stable detection of
the grid structure and codes that are embedded into the grid points. In addition,
3D shapes of strong subsurface scattering objects are successfully reconstructed,
which is only scarcely reconstructed even with the previous technique which is
designed to robust to blurring effects. In the future, in-vivo experiments for test
and real diagnosis purposes are important for real system.
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