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Abstract

The standard photometric stereo is a technique to
densely reconstruct objects surfaces using light variation
under the assumption of a static camera with a moving light
source. In this work, we use photometric stereo to recon-
struct dense 3D scenes while moving the camera and the
light altogether. In such non-static case, camera poses as
well as correspondences between pixels of each frame to ap-
ply photometric stereo are required. ORB-SLAM is a tech-
nique that can be used to estimate camera poses. To retrieve
correspondences, our idea is to start from a sparse 3D mesh
obtained with ORB SLAM and then densify the mesh by a
plane sweep method using a multi-view photometric consis-
tency. By combining ORB-SLAM and photometric stereo,
it is possible to reconstruct dense 3D scenes with a off-
the-shelf smartphone and its embedded torchlight. Note
that SLAM systems usually struggle with textureless object,
which is effectively compensated by the photometric stereo
in our method. Experiments are conducted to show that our
proposed method gives better results than SLAM alone or
COLMAP, especially for partially textureless surfaces.

1. Introduction

Among all the techniques used for 3D reconstruction,

photometric stereo shines by its ability to capture details,

and to work even with textureless surfaces. This technique

has many applications. In the archaeological field, photo-

metric stereo can be considered to generate 3D models of

ancient objects difficult to manipulate. In art, it can be

Figure 1. Example of one experiment for reconstruction. The ex-

periment is conducted in a dark environment with a smartphone

whose flashlight is turned on (b). The smartphone takes a video

and we then compute the camera poses (blue rectangles on (a)),

the trajectory (green lines on (a)) and a point cloud (red points on

(a))

used to recover barely visible details of bas-reliefs. Un-

fortunately, most of existing photometric stereo techniques

require a static camera and a moving light, which prevents

from a usage on a mobile device; it is a technique that re-

mains only used in laboratories with specific setups. In this

work, our objective is to make this technology usable for

any smartphone users by moving around a close-up target

scene with the flashlight on, which will be used as the mov-

ing light source. We are targeting lambertian surfaces in

dark environments.

In our case, the camera and the light source are moving

together since they are embedded on the same device. This

makes the photometric stereo problem more challenging to
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solve compared with the standard fixed camera set-up. Our

proposed set-up adds two requirements to the standard pho-

tometric problem: (1) an accurate estimation of the cam-

era pose for each input image (which is also the pose of the

flashlight), (2) correspondences between pixels to create the

photometric system. (1) will be acquired with SLAM. (2)

will be avoided using a plane-sweep approach.

The Simultaneous Localisation and Mapping (SLAM)

technology is efficient to quickly compute camera poses

from a sequence of RGB images in various environments.

We reason that the SLAM technology is the solution to over-

come the above mentioned issues, which will allow to re-

construct dense 3D models of objects with a mobile device,

even in the case of textureless objects.

We propose to use ORB-SLAM [16, 17] to compute

camera poses and 3D features (ORB features). ORB-SLAM

has the advantage to be usable with many kinds of move-

ments and on any scale. Thanks to photometric stereo, we

can compute normal vectors of the initial point cloud found

by SLAM. Then, using the multi-view photometric consis-

tency, we can densify this point cloud.

Our contributions are (1) the creation of an algorithm for

dense 3D reconstruction with a smartphone using its em-

bedded camera and flashlight, (2) a densification method to

reconstruct 3D scenes with only few initial points, and (3)

a method of close-up 3D reconstruction that works in dark

environment and with partially textureless objects.

2. Related work
Structure-from-motion is the most popular method to get

camera poses and sparse 3D features. It is particularly effi-

cient in recovering large-scale structures but struggles with

high-frequency details. [6, 18]. This standard technique

uses point correspondences to get a trajectory of key points

and thus, get the pose of the camera for each image. The

state-of-the-art technique that is currently acknowledged is

COLMAP [23]. It has the ability to extensively and accu-

rately build a 3D scene from a sequence of RGB images.

The drawbacks of this method are that it is highly time-

consuming since it will extract from all the images as many

features as possible. It also requires clearly visible textures

to get a smooth result. Nevertheless, COLMAP is the ref-

erential work that has to be considered when estimating the

efficiency of a technique for 3D reconstruction.

Photometric stereo is an acknowledged technology [24,

25, 10] that uses a pixel-wise approach to recover the nor-

mal vectors and the albedo of a scene captured with a spe-

cific setup (a camera and a system of varying lights). Based

on the variation of the light intensity, it performs well with

static conditions (static scene and camera). The user also

usually needs to know the pose of the lights beforehand.

Some works targeted the dynamic scenes [28, 4, 15] but

they only partially used photometric clues and few con-

sidered a dynamic camera. In [11], Higo et al. proposed

a mathematical model based on [1] for photometric stereo

when using a moving camera. However, they use a heavy

process to get their final normal map. They consider an

extensive list of possible correspondences for every single

pixel and apply the photometric equations for every corre-

spondences.

These last two decades, researchers started to work on

unifying Structure from Motion and photometric stereo

using various techniques such as Optical flow [26]. In

[21], photometric stereo and Structure from Motion are ap-

plied separetely; for photometric stereo, the camera remains

static but moves for the Structure from Motion. In [8], the

authors proposed to use multiple camera. Those solutions

are not usable with a monocular camera.

SLAM technologies are used for odometry and can be

used with a monocular camera. Recent methods [5, 16, 17]

are able to reconstruct large scenes as long as some con-

straints are respected (apparent textures, no changing light).

With only images taken by a moving camera, it is possi-

ble to get the camera pose in real-time. Various SLAM

algorithms exist; some are dense (depth-map oriented) [5]

and others are sparse (key-point oriented) [16, 17]. Depth-

map oriented algorithms such as LSD-SLAM [5] usually

focus on large scale scenes. Since our focus is on close-up

scenes, we chose to use a key-point oriented approach. It

also brings many benefits. First, ORB-SLAM [16] is a key-

point oriented algorithm that works well on any scale. It

is also fast and robust to many different kind of movements

including pure rotations [13, 12]. Since we cannot avoid the

user to be shaky, this is a key aspect for us. Additionally,

the bundle adjustment introduced in [17] brings more accu-

racy in the pose estimation, which is something essential for

photometric stereo. Nonetheless, ORB-SLAM, as a tech-

nique using feature-based approach, performs poorly when

the textures are not completely obvious, the light changes

[19], the scene is blurry or the environment is dark. If those

bad conditions appear, the point cloud might be inaccurate

and sparse.

In our proposed work, we use as a basis the point cloud

found by ORB-SLAM, which gives us a large amount of

reliable correspondences. The missing correspondences are

then computed by triangulating these reliable points.

3. Proposed method
Starting from a video taken by a smartphone, our objec-

tive is to reconstruct a dense 3D point cloud. The pipeline

of our proposed method is described in Figure 2. We use

ORB-SLAM (section 3.2) to obtain the camera pose and

an initial sparse 3D point cloud. With this information, we

apply photometric stereo (section 3.3) to obtain the normal

vectors. Finally, we densify (section 3.4) our point cloud

using a recursive approach of multi-view photometric con-
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Figure 2. Pipeline of the proposed method. The input is a video taken by a smartphone. The output is a dense point cloud. More details

will be provided for each step in the corresponding sections: (1) ORB-SLAM: Section 3.2, (2) Photometric Stereo: Section 3.3, (3)

Densification: Section 3.4

sistency.

3.1. Image acquisition

Our proposed method starts with only one input: we pro-

vide a video where the camera moves around the object to

reconstruct. We do not require any prior knowledge con-

cerning the scene. The camera is calibrated beforehand [27]

[3] to obtain camera internal parameters. The input video is

divided into several frames. To apply photometric stereo, a

large variation of movement is required in order to have a

large panel of light orientations. During the acquisition of

this video, the torchlight is turned on to create the condition

of light variation. To increase the accuracy of our proposed

method, we avoid using auto-focus and changing the white

balance during the acquisition. We also avoided saturation.

3.2. ORB-SLAM-based algorithm

In our proposed method, we use ORB-SLAM in order

to get the camera pose (and consequently the light pose).

These poses are then used to build the photometric equa-

tions that we will detail in Section 3.3. ORB-SLAM also

provides an initial point cloud that will be used as a starting

point for densification that will be detailed in Section 3.4.

ORB-SLAM extracts ORB features in all images to find

a set of correspondences between all the images as ex-

plained in [16]. These correspondences allow us to compute

the camera pose of each input image. Since the camera and

the torchlight of a smartphone are usually close to one an-

other, we assume that the light pose corresponds to the cam-

era pose. From now on, we will only talk about the camera
pose but it also refers to the light pose. Among all the in-

put images, a series of key frames is selected. This selection

is based on the number of feature as explained below. The

world coordinate system is set as the camera coordinate of

the first key frame. The scale of the scene is arbitrarily de-

fine as the median scene depth during an initialization step

[17]. To compute the camera pose, the algorithm uses ho-

mographies and the fundamental matrices as in [16]. If the

scene is rather planar, the homography is used. On the other

hand, if the scene is non-planar and has a low-parallax, the

fundamental matrix is used. To evaluate the type of scene, a

score function is computed for each of the two models. As

in [16], we use a score function based on symmetric transfer

errors [9].

Bundle adjustment is used to refine the results as ex-

plained in [17]. In the end, we get the transformation from

world to camera coordinate system.

P cw =
[
Rcw T cw

0 1

]
.

(1)

We note the inverse transformation Pwc. In addition to

the camera pose, we also get a sparse reconstruction of the

scene in 3D with key points. For all those key points, we

have correspondences between all the key frames. With the

pose of the camera and the initial correspondences, we can

apply the equations related to photometric stereo.

3.3. Photometric Equations

We propose to apply the equations of photometric stereo

considering that (1) the camera is moving, and (2) the light

source is a near-light source close to the object. With the

equations corresponding to these assumptions, we can build

a solvable system. This system is used twice in our pipeline

as we have shown on Figure 2: (1) to get the normal vector

of each point of our initial point cloud, and (2) to densify our

point cloud using a multi-view photometric consistency.

3.3.1 Photometric stereo adapted to a moving camera

For each pixel p from the ith image, the standard photo-

metric equation (static camera, lambertian surface) in his

simplest form as explained by Woodham in [24] links the
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pixel intensity si(p) with the albedo ρ(p), the light vector

li(p) (3 dimensional vector corresponding to the direction

from the pixel p to the light source) and the normal vector

n(p). n(p) and li(p) are in the same coordinate system. We

consider that the scale is the one computed by ORB-SLAM

during its initialization step. Additionally, we add a bias

a(p) to remove from the pixel intensity the component that

is due to the ambient light. The photometric equation is as

below:

si(p)− a(p) = ρ(p)(li(p) · n(p)). (2)

Since the camera coordinate system is changing for each

image, the natural coordinate systems to use is the world

coordinate system (equivalent to the camera coordinate sys-

tem of the first key frame).

For each image, the origin of the camera coordinate sys-

tem is the position of the camera. Consequently, it is easier

to compute the light vector in each camera coordinate sys-

tem and then project it into the world camera coordinate

system using the rotation matrix Rwc. Considering the ori-

gin of the camera coordinate system as the position of the

light source, the light vector in the camera coordinate sys-

tem li(p)
c is then li(p)

c = −P cw.x(p) where x(p) is the

position in world coordinate system of pixel p (homoge-

neous coordinate). After projecting in the world coordinate

system, we finally can write :

li(p) = −RwcP cwx(p). (3)

3.3.2 Near-light photometric stereo

Equation 2 is valid only if we assume that the origin of the

light source is at infinity from the object. In our work, the

camera and the light are considered being at the same point

and we focus on close-up scenes. As a consequence, we

cannot make this assumption of infinite distance. We need

to correct the light vector (2) to take this aspect into account.

The optimization of the near-light photometric model is a

problem that is still investigated and usually includes heavy

optimization. The simplest model in terms of computation

is a fall-off decreasing with the size of the light vector [20].

We correct the equation (1) and (2) and finally get:

si(p)− a(p) = ρ(p)(l′i(p) · n(p)), (4)

with

l′i(p) = −
RwcP cwx(p)

|RwcP cwx(p)|f , (5)

where f is the fall-off factor. If f = 0, we get back to the

standard case as described in equation (2). The quadratic

model (f = 2) and the cubic model (f = 3) are often used

in the literature [20, 14].

3.3.3 Photometric system

We use the photometric equation (3) to get the normal vec-

tors. We define N(p) as the number of correspondences

for the key point p. In theory, the equation (3) is verified

for all images and all pixels. We can consider ρ(p)n(p) as

a 3-dimensional unknown and separate ρ(p) and n(p) by

normalizing. Then, we create the system as in (6). The sub-

scripts x, y and z refer to the 3 components of 3D vectors.

⎡⎢⎢⎢⎣
s1(p)

s2(p)

s3(p)

s4(p)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
l′1(p)x l′1(p)y l′1(p)z 1

l′2(p)x l′2(p)y l′2(p)z 1

l′3(p)x l′3(p)y l′3(p)z 1

l′4(p)x l′4(p)y l′4(p)z 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

(ρ(p)n(p))x
(ρ(p)n(p))y
(ρ(p)n(p))z
a(p)

⎤⎥⎥⎥⎦.

(6)

The unknown values are the scalar a(p) and the 3D vec-

tor ρ(p)n(p). It corresponds to 4 unknowns. For a given

pixel p, if we get at least N(p) = 4 points of view, it is

possible to create a solvable system. If there is no ambient

light (a(p) = 0), we can reduce the system to 3 unknowns.

We will stick to the general case for now.

In theory, N(p) = 4 equations are enough but we con-

sider solving the photometric system only if at least N(p) =
10 correspondences are found. Also, we want for each i

si(p) > smin where smin is a fixed threshold defining the

minimum pixel intensity to be considered relevant in terms

of intensity information. We then solve this equation using

the least-square method. In our method, we use this equa-

tion in two different steps of our process. For the process

of estimating the normal vectors, there is no particular dif-

ficulty since we use the correspondences between the key

points found by our SLAM part. These estimated normal

vectors are used to get an initial direction for each key point.

The second time that we use this system is in the densifica-

tion process. In this part, we astutely reverse the problem,

and use it to find the missing correspondences.

3.4. Densification

So far, we got a set of key points, and after a first usage of

the photometric equation, we got an initial estimation of the

normals of those points. Now, our objective is to densify our

3D point cloud, which is done using a recursive approach.

First, we apply a 3D Delaunay Triangulation to generate

a list of triangles [7]. Inside those triangles, we have no

information. The inside is flat, which is unlikely to be the

true shape of the object to reconstruct. We want to fill in

the inside of those triangles with as many points as possible

to reconstruct details. For each initial triangle, we compute

the gravity point G0.

Thanks to the normal vectors previously computed with

photometric stereo, we estimate a searching direction (only

one degree of liberty). This direction is simply computed as
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Figure 3. Process of densification. We start from a triangle whose vertices are key points found by ORB-SLAM. We slide across a line that

cross the gravity point G0, and whose direction is the mean value of the vertexes’ normal vectors. The step is S0 at first step. P0 is the

most reliable point. We then repeat the process considering P0 as a vertex of 3 new sub-triangles

the mean value of the normal vectors of each vertex. Then,

we slide along the axis created by this direction.

The initial sliding step S0 is defined as a tenth of the

smallest side of the current triangle. When the point is

in its true position on the surface, it means 2D reprojec-

tions on each image should lead to corresponding points.

If the points are corresponding, the photometric constraint

(4) should be satisfied. Consequently, by picking the can-

didate which minimizes the photometric error e(p), we can

identify the true position of the point on the surface with-

out knowing the correspondences. If the point is reliable

enough, it is added to the mesh as P0, and can be used as

a new vertex, and thus creates 3 sub-triangles. Inside each

sub-triangle, we compute a new gravity point G1 and a new

sliding step S1 to add a new point P1. The process can then

be repeated again and again.

e(p) =
1

Np
.

√√√√ Np∑
i

(si(p)− s̃i(p))2. (7)

d(p) =
1(
Np

2

) .
√√√√ Np∑

i,j,i �=j

(si(p)− sj(p))2. (8)

A point is considered reliable enough when the two fol-

lowing conditions are met. First, the error e(p) has to be

inferior to a minimum error called τe. s̃i(p) corresponds

to the recomputed pixel intensity using the solution of our

system. Secondly, the variation d(p) for pixel p between all

the pixel intensities of the system should not be too wide

(inferior to τd) to avoid discontinuities. Outliers are also re-

jected by applying RANSAC. Each key point of the initial

point cloud is also evaluated based on the same error con-

ditions, which leads to the removal of some points in the

initial point cloud.

During the 2D reprojection, some triangles might over-

lap with the background on some frames, which leads to

useless or even wrong new points. The threshold smin men-

tioned in Section 3.3.3 is a way to address this issue. A

concrete example will be provided with the cone dataset in

Section 4.5.

As we mentioned before, this approach is recursive. For

each initial triangle, we subdivide into 3 triangles which are

also subdivided 3 times etc... We perform this process 5

times. Consequently, we can create a maximum of 35 = 243

subtriangles for each initial triangle. In practice, we never

reach this maximum since there are always some points that

are not reliable. Once all the consistent triangles are com-

puted, we get a densified point cloud as our final output.

4. Experimental results

We evaluate our proposed method with real datasets.

We used the quadratic model (f = 2 in Equation (5)).

We experimentally fixed τe = 0.04, τd = 50 pixels and

smin = 50.

4.1. Camera and Torchlight specifications

We captured the data using a Huawei P20 smartphone.

This smartphone uses Leica optics and a LED flash. The

torchlight and the camera are positioned at around 1 cm to

one another. It is equipped with a 50 mm f/1.8 lens. To

acquire the images, we used the Android application FooteJ

which allows us to manually control all the parameters of

the camera. We conducted our experiments with a 1/60

shutter, an ISO of 1200 and a focal of 2.4 mm. For the cone

dataset, we used an ISO of 200 because of the whiteness of

the surface. Beforehand, we calibrated the camera using a

chessboard [27]. Here as well, we used 960x720p images

saved in .png file format. As it is a real case, we have no

information about the real fall-off function.
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Box COLMAP ORB-SLAM Our method

KF / Total NA 16/860 16/860

Points count NA 9,763 105,276

Time NA ∼1 min 19 min

Cushion Colmap ORB-SLAM Our method

KF / Total 832/832 11/832 11/832

Points count 10,840 5,531 22,2941

Time ∼14h ∼1 min 12 min

Cone COLMAP ORB-SLAM Our method

KF / Total 706/706 15/706 15/706

Points count 6547 4726 13,691

Time ∼22h ∼1 min 9 min
Table 1. Comparison between COLMAP, ORB-SLAM and our

method to highlight the densification. KF corresponds to the num-

ber of key frames. COLMAP could not render a proper result for

the box dataset after more than 30 hours of computation

4.2. Datasets

If a part of the scene contains many features (such as a

textured wall), our ORB features will mainly focus on those

points. Consequently, since we do not want to focus on

simple walls, we avoid textures on the walls and the floor if

there are some. We also avoid ambient light (a(p) = 0) .

We used 3 different objects: a box, a cushion and cone-

like shape. Note that the box and the cushion have some

textures on it. Concerning the object with the cone-like

shape, it is completely white which makes it challenging to

reconstruct with SLAM. During the acquisition, the camera

is zigzagging around the object at 180 degrees.

Table 1 displays for each dataset a quantitative com-

parison between COLMAP, ORB-SLAM and our proposed

method. All experiments where conducted on the same

CPU.

4.3. Dataset with flat surfaces

Figure 4 shows some typical frames of the box dataset

and the point cloud of our algorithm. The box was placed at

a distance from the camera so that the object is blurry. With

this experiment, we can prove that our algorithm still works

when some pixels are ambiguous due to bluriness.

The white point cloud (Figure 4 (c)) is the point cloud

obtained with the standard ORB SLAM algorithm [17]. As

we can see, SLAM can generate the general shape, but it

is sparse and it cannot properly find the border of the sur-

faces. The green point cloud is obtained with our technique.

Our result has a higher density of points in comparison with

ORB-SLAM. Note that some parts are more densified than

others. While the green point clouds emphasizes the densi-

fication, the normal map highlights the shape of the box.

We could not generate a similar point cloud with

COLMAP. Whenever we tried, COLMAP failed to provide

a proper point cloud. We reason that the bluriness of the

images might be a hindrance for the computation. Unlike

COLMAP, our proposed method is not hindered by such

problems.

This example shows that our proposed method gets prop-

erly the general shape of the object, which is not the case

with SLAM. It also provides a higher density of points. This

type of flat surface is a simple case, so we tried with other

surfaces.

4.4. Dataset with curved surfaces

On the Figure 5, the point clouds obtained with the cush-

ion dataset are displayed. We chose this cushion to test

curved surfaces, as the cushion has two different kinds of

curvatures (top part and lateral part). The shakiness of the

user and the blurriness of some frames do not disturb our

proposed method.

As we can see, our proposed method significantly im-

proves the density of the point cloud in comparison with

SLAM. Besides, while the ORB-SLAM’s point cloud is

ambiguous for some parts of the surface, the photometric

stereo helps us to remove the inconsistent points as ex-

plained in Section 3.4, and thus, get a thin surface. The

white points on the point clouds generated by our proposed

method correspond to points found by SLAM and consis-

tent enough to be kept.

Besides, our proposed method is better than COLMAP

to render the true shape of the object. The rendered point

cloud from COLMAP seems smooth and homogeneously

dense, nonetheless, it wrongly curved the shape. In Figure

5, we can notice that the real cushion is not as round as

COLMAP output, but way closer the shape of our proposed

method. COLMAP does not distinguish the two kinds of

curvatures on the cushion while our proposed method does.

4.5. Dataset with both flat and curved surfaces

The third dataset is a more challenging surface. We dis-

play the result on Figure 6. It is a kind of cone with a cuboid

on top of it. The object is completely white. Since ORB-

SLAM had difficulties to find key points on the top of the

cone, we added a red marker at this position and 3 small thin

yellow markers to make the initial point cloud computation

a bit more consistent.

One of the other challenging aspects of this surface is the

occlusions due to the cuboid overlapping with the cone. For

this dataset in particular, the minimum intensity threshold

smin explained in Section 3.4 was crucial to avoid wrong

points between the cuboid and the base of the cone.

Due to the sparseness of the point clouds, the compu-

tation of the normal based on the closest neighbour does

not render the perfect orientations of the surfaces (for all

the techniques). Nonetheless, we can see that we obtained

local densifications. For example, the densification is more

important on the right part than on the left part of the cuboid.
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Figure 4. Densification result obtained using the box dataset. With the same input frames (a), we generated a point cloud, using our

proposed (d) and ORB-SLAM (b). The last column represents a smoothed colored map to visualize the shape of the box.

We explain this difference of density by the fact that the ini-

tial time required by ORB-SLAM to initialize the poses is

higher than for the box and cushion dataset. ORB-SLAM

particularly struggles with this partially textureless object.

Our proposed idea to add photometric stereo is here to dras-

tically diminish the impact of this struggle in the final out-

put.

5. Discussion and further work
By combining ORB-SLAM and photometric stereo, it is

possible to highly benefit from these two techniques. First,

photometric stereo needs accuracy and robustness which is

provided by ORB-SLAM; the user can do rotation around

the object and be shaky without altering the results. It does

not require any a priori knowledge regarding the poses of

the camera and the light. Thanks to the selection of key

frames and key points by ORB-SLAM, it is possible for

our photometric computation to focus only on images of

interest. Also, ORB-SLAM performs poorly with texture-

less surfaces and dark environments which are cases where

photometric stereo performs well. However, ORB-SLAM

and photometric stereo’s opposition on the texture condi-

tions leads to a difficulty: we need ORB-SLAM to be able

to track key points, which means purely textureless surfaces

cannot be used. Only partially textureless surfaces allows

ORB-SLAM to track points.

In terms of computation time, we managed to get a den-

sity of point similar to COLMAP with never more than 2%

of its computation time, as Table 1 shows. Besides, even

though COLMAP renders good-looking surfaces, the real

shape is usually not as curved as what COLMAP thinks it

is. Our proposed method provides a more realistic render-

ing for curves, in a way smaller computation time.

We improve significantly the density of a point cloud that

can be obtained with a mere use of ORB-SLAM. Our ex-

periments with real objects tend to prove the feasibility of

real reconstruction with a simple smartphone in dark envi-

ronments. Our field of interest was not dealing with non-

lambertian surfaces and shadows. Different optimization

techniques has been developed to target those issues [22]

[2]. Using those techniques will probably increase the ver-

satility of this smartphone use of photometric stereo.

6. Conclusion

Our method grants access to smartphone users with the

acknowledged technique of photometric stereo. Thanks to

ORB-SLAM, we created an automated process for a simpli-

fied usage; no beforehand knowledge concerning the cam-

era pose or light pose is required, and we obtain an initial

sparse 3D scene. Starting from this sparse scene, we use a

photometric system to compute a sparse set of normal vec-

tors. Then, we densify our 3D scene using multi-view pho-

tometric consistency. We obtained promising results with

real scenes and put forward the potential of photometric

stereo to be complementary with the ORB-SLAM difficul-

ties to reconstruct dark scenes and partially textureless ob-

ject.
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Figure 5. Point clouds obtained using the cushion dataset. With the same input frames (a), we generated a point cloud, using our proposed

(b) and compared with COLMAP (c) and ORB-SLAM (d). The last column represents a smoothed colored map to visualize the shape of

the cushion.

Figure 6. Results obtained using the cone dataset. With the same input frames (a), we generated a point cloud, using our proposed (d) and

compared with COLMAP (b) and ORB-SLAM (c). The last column represents a smoothed colored map to visualize the shape of the cone.
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