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Abstract. Reconstructing the entire body of moving human in a com-
puter is important for various applications, such as tele-presence, virtual
try-on, etc. For the purpose, realistic representation of loose clothes or
non-rigid body deformation is a challenging and important task. Recent
approaches for full-body reconstruction use a statistical shape model,
which is built upon accurate full-body scans of people in skin-tight
clothes. Such a model can be fitted to a point cloud of a person wear-
ing loose clothes, however, it cannot represent the detailed shape of loose
clothes, such as wrinkles and/or folds. In this paper, we propose a method
that reconstructs 3D model of full-body human with loose clothes by re-
producing the deformations as displacements from the skin-tight body
mesh. We take advantage of a statistical shape model as base shape of
full-body human mesh, and then, obtain displacements from the base
mesh by non-rigid registration. To efficiently represent such displace-
ments, we use lower dimensional embeddings of the deformations. This
enables us to regress the coefficients corresponding to the small number
of bases. We also propose a method to reconstruct shape only from a sin-
gle 3D scanner, which is realized by shape fitting to only visible meshes
as well as intra-frame shape interpolation. Our experiments with both
unknown scene and partial body scans confirm the reconstruction ability
of our proposed method.

Keywords: Non-rigid registration · eigen-deformation · neural network
· human shape reconstruction.

1 Introduction

A full-body human shape reconstruction with realistic clothes deformations is
important for various applications, such as tele-presence, virtual try-on, etc. in
order to achieve immersive feelings and realistic sensations. Unlike skin-tight
clothes, loose clothes can be deformed dynamically, and thus, it is an open prob-
lem to capture and represent them. There are two main approaches to solve this
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problem: non-prior and prior based methods. Non-prior methods can reconstruct
any shape and the resolution of the reconstructed model varies depending on the
resolution of the camera [6, 14, 21, 25, 26]. Some recent approaches [6, 14] fused
non-rigid deforming surfaces into a volumetric model by using a single-RGBD
camera and could achieve real-time reconstruction. These approaches can recon-
struct any shape as they are not specified to a human body. Therefore, they
cannot also describe deformations of clothes efficiently that are caused by hu-
man motion and pose. Although recent approaches can reconstruct humans who
wear any type of clothes [25,26], they may generate holes, wrong connections in
the meshes, unwanted shapes at unobserved regions.

On the other hand, prior based methods can reconstruct full-body human
with a consistent mesh without any hole. Recently, statistical shape models [1,
2, 4, 11] are often used as full-body human priors. Statistical shape models can
represent pose-dependent deformations, such as bending arms or deformed mus-
cles, with only a few shapes and pose parameters. There are some methods that
can reconstruct full-body 3D human shape only from a single image using a sta-
tistical shape model [3,8,15,17,20,23]. One severe drawback of these methods is
that the model can only be used with people wearing skin-tight clothes; however,
in real situation, people rarely wear such clothes.

Although statistical shape models have several limitations as mentioned above,
their ability on shape representation by shape and pose parameters is still
promising. In this paper, we propose a non-rigid full-body human shape re-
construction from point clouds measurements, even when the person is wearing
loose clothes and captured from a single viewpoint. To this end, we use a sta-
tistical shape model as a base for full-body human modeling and regress the
displacements between the base mesh and the clothed mesh by training a neural
network. This allows us to take advantage of the efficient representation of the
model and represent the clothed human mesh in lower-dimension. Similar to our
work, Yang et al. [24] regresses coefficients corresponding to eigenvectors which
are obtained through PCA of the displacements and reconstruct full-body hu-
man with the same resolution as the target mesh. However, they assume that the
target mesh is consistent through the process, whereas such limitation does not
exist in our method. Kimura et al. [9] also regress the coefficients corresponding
to eigenvectors obtained by PCA of target displacements. In contrast, we not
only regress the coefficients but also train eigenvectors as weight of the last layer
of a neural network which is used as a regressor. The main contributions of this
paper are summarized as follows:

1. Eigenvectors and coefficients are obtained by trianing a neural network to
achieve accurate full-body reconstruction with using a lower dimensional
space compared with previous method.

2. Direct regression of displacement values by neural network is proposed to
enable reconstruction of full-body human shape even if parts of the body
were not observed for training data.
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2 Related Work

The 3D reconstruction problem is extremely challenging for the case of non-rigid
objects/scenes because it requires a non-rigid 3D registration.

In the case of human body, deeper prior knowledge has been used. For exam-
ple, Malleson et al. [12] proposed a method that assumes that each body part
is rigid. A human body is then described as a combination of these body parts
under this assumption, and a voxel carving-based approach is used for recon-
structing each body part with texture. Due to the rigidity assumption, however,
this method sometimes suffers from discontinuity at body part joints.

Another interesting approach is to use a statistical human body shape model,
such as SCAPE [1] or SMPL [11]. A statistical shape model for the human body is
usually trained with many full-body measurements of different body shapes and
poses, and these variations are parameterized in a low dimensional space. There-
fore, aligning the human body model to a depth measurement is much easier.
Bogo et al. presented a high-quality method for full-body reconstruction upon
a statisticcal shape model [2] from a single RGB-D camera. Recently, several
methods perform full-body reconstruction from a single RGB image [3,8,17,20].

One major criticism on such methods is their insensitivity to deformations
that are not described by the statistical shape model. In most cases, the full-
body measurements used for training the model are in skin-tight clothes. Thus,
such methods are usually tested with skin-tight clothes.

Recently, several methods have used statistical shape models to reconstruct
not only the human body but also the clothes [5, 7, 9, 18, 24, 26]. Pons-moll et
al. [18] proposed to use 4D scan data of human with clothes as input and fit
a model. By segmenting the body part and clothes part, they can retarget the
clothes to a novel model. Yu et al. [26] used SMPL model as a semantic and
real non-rigid human motion prior. They pre-defined an on-body node graph on
the SMPL model and a method ran similar to DynamicFusion [14], which means
that the outer surface is parameterized by such nodes and the deformations of
the surface can be represented by a rigid transformation of the nodes. They also
define the points far from the SMPL body as far-body nodes. This enables their
method to be robust against noise. Nevertheless, their results are still noisy and
cannot describe pose-dependent clothes deformations. Joo et al. [7] presented
the Adam model in their work. Adam model can represent not only the body
pose and shape but also facial expressions, finger motion, head and clothes. The
reconstruction results are impressive but their model is too smooth to represent
clothes deformations and thus cannot represent the deformations depending on
the human pose. Habermann et al. [5] proposed a model-based full-body recon-
struction method via a low cost single RGB camera. They built subject and cloth
specific models in a pre-process and reconstruct full-body 3D model using pose
optimization and non-rigid deformation. Their results are attractive but due to
the final non-rigid deformation method, clothes deformations of their model are
not realistic.

The methods proposed by Kimura et al. [9] and Yang et al. [24] are similar to
our work. Both of them represent clothes deformations as displacements from the
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Fig. 1. Overview of our system. We first calculate the displacements between human
shape with clothes and a template model. Then, these displacements are represented by
small number of bases and coefficients. The displacements and coefficients are estimated
by regressing the human pose parameters.

skin-tight model, which is reconstructed from shape and pose parameter of statis-
tical shape model. They both represent such deformations in lower-dimensional
space and deal with the deformations of the clothes caused by the pose of the
person wearing it. Based on this assumption they regress the coefficients corre-
sponding to the eigenvector of lower-dimensional space. Although Yang et al. [24]
assume that the input data has topologically consistent mesh, Kimura et al. [9]
does not. This means that their method can be applied to any point cloud data.
However, Kimura et al. [9] only estimate the coefficients, that is, they cannot
estimate if the input data is partially observed.

In our proposed method, deformations that cannot be described by a statisti-
cal shape model are obtained by fitting a 3D mesh to a depth measurement. The
deformations in each triangle in the mesh are then embedded in a space parame-
terized by body part rotations, which we call eigen-deformations, assuming that
the deformations are dependent only on them. For the back side of the measure-
ments, we regress the deformations based on the eigen-deformation. Note that
our registration process is modular: we introduce our own implementation, but
Bogo et al. [2], for example, can be used instead.

3 Method

3.1 Overview

The deformations of clothes are in general due to the specific pose of the person
wearing them. Therefore, our proposed method regresses displacements between
loose and skin-tight clothes from the pose. Fig. 1 shows an overview of our pro-
posed method. In the data preparation, which consists of non-rigid registration
(Sec. 3.2) and eigen-deformation (Sec. 3.3), we use a sequence of point cloud
data T as input, the input sequence can contain data about either the full body
or only a part of it and obtain full-body human meshes with skin-tight and loose
clothes (M ′ and M) as output. In the regression stage(Sec. 3.4), we input a
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human pose and regress displacements D. We describe how to train a neural
network to regress the displacements with partially observed data in Sec. 3.5.

We use a statistical shape model to represent the full-body human mesh and
deform it to represent loose clothes. Specifically, we use the SMPL model [11] as
our base model, which is parameterized with the body shape parameter β and
body pose parameter θ.

First, we fit the SMPL model to the scanned point cloud data frame by
frame. This is done step by step. Through this stage, we obtain skin-tight mesh
M ′, which has the optimized joint angles θ and body shape β of the SMPL
model, and clothed mesh M , which represents clothes deformations. Second, we
calculate displacements D between M and M ′ and perform PCA on it to obtain
bases of the displacements and the coefficients corresponding to the bases. Third,
we train two types of neural network (NN): a coefficient regression neural network
(called CRNN) and a bases estimation neural network (called BENN). CRNN is
a network that regresses the coefficients corresponding to the bases obtained in
the previous stage. BENN is a network that has the bases of the displacements
as a part of weight parameters and directly regresses displacements D({Θ}).
When the training data is partially occluded, we use a visibility map to ignore
the occluded parts.

To summarize these notations, the mesh M̄ obtained by regression is repre-
sented as:

M̄ = M ′(β,θ) +D({Θ}), (1)

Our goal is to regress unobserved pose-dependent clothes deformations from the
pose of the human body.

3.2 Non-rigid registration of the SMPL model

First, Our system fits the SMPL model [11] to the input sequence of point
clouds, each of which is a human body scan. This facilitates compression (and
efficient representation) of human bodies with loose clothes, because the SMPL
model gives us an efficient parametrization of the human body by body shape
parameters β and joint angles θ.

First, our algorithm fits the SMPL model to the target point cloud T in the
input sequence in the coarsest level, which means optimizing only the SMPL
pose and shape parameters. The following energy function is minimized over
body shape parameters β and joint angles θ.

E(β,θ) =
∑

i∈Canc

‖x′i(β,θ)− yi‖2

+ P (θ) +R(θ) + S(β) +Q(β,θ) (2)

where x′i(β,θ) and yi are the i-th vertex in M ′(β,Θ) and its corresponding point
in T . P is a pose prior built as logarithm of as sum of mixture of Gaussians, which
keeps θ in probable pose space. R is the penalties for unusual joint angles, S for
large β values that correspond to inplausible shapes, Q for inter-penetration of
body parts. More details on these penalty terms can be found in [3].
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Second, the skin-tight 3D mesh M ′ is inflated to roughly minimize the dis-
tance between the mesh of M ′ and the target cloud points T according to their
silhouette points. The silhouette points are identified in 2D reprojected images.
When using a single camera, we project both M ′ and T to the image plane of
the camera to find the silhouette points. This step introduces more flexibility
in vertex positions so that M can be closer to T , which makes the finest step’s
fitting more stable.

In this step, we restrict the possible displacement of the i-th vertex in M to

xi(β,θ, {n, l}) = x′i(β,θ) + nili, (3)

for all i, where xi ∈ M , x′i ∈ M ′, ni is the direction of the movement on
M ′ at x′, and li is the amplitude of the displacement. Here, Kimura et al. [9]
allowed each vertex to move only in their normal direction, while we allow for
more freedom in the displacement direction. This new formulation prevents each
mesh to interpenetrate (e.g. around the crotch when a person stand). The energy
function to be minimized according to the silhouette correspondences Csil during
the fitting process is:

E({n, l}) =
∑

i,j∈Csil

‖xi − yj‖2 + λl
∑

i,j∈Aver

(li − lj)2

+ λnormal

∑
i,j∈Aface

|Nface
i −Nface

j |

+ λrot
∑
|ni − n′i|+ λlaplacian

∑
|xi −

1

zi

∑
j∈Ni

xj |, (4)

where Aver and Aface are adjacency of vertices and faces of the SMPL model

respectively. Nface
i is the normal of the i-th face. n′i is the normal vectors of the

i-th vertex of M ′. Ni is the set of adjacent indices of the i-th vertex and zi is the
number of the adjacent vertices around the i-th vertex. λl, λnormal, λrot, and
λlaplacian are weights to control the contributions of the associated terms. The
second term is a regularizer to keep the displacement of the adjacent vertices
similar. The third term regularizes the direction of the adjacent mesh normals
to avoid too flat surfaces. The fourth term keeps the vertex direction of the
movement as rigid as possible. The last term is the Laplacian mesh regularizer
inspired from [13,19], which enforces smoothness.

At the finest step, we use all vertices and points instead of the silhouettes to
make correspondences. Also, the displacements are not restricted by (Eq. (3)),
i.e.,

xi(β,θ, {d}) = x′i(β,θ) + di. (5)

With these modifications, the energy function to be minimized is:

E({d}) =
∑

i∈Call

‖xi − yi‖2 + λnormal

∑
i,j∈Aface

|Nface
i −Nface

j |

+ λlaplacian
∑
|xi −

1

di

∑
j∈Ni

xj |, (6)
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where Call are the correspondences between M and T . In this step, the near-
est neighbors from T to M are updated in an iterative manner. At the final
iteration, if the target point cloud T is a full-body human data, we identify cor-
respondences not only from T to M but also from M to T . This allows us to fill
gaps, which sometimes occur around the armpit and the crotch. Owing to the
Laplacian regularizer term, vertices in the SMPL model which do not have any
correspondence also move by being dragged by the other vertices.

After this non-rigid registration step, we obtain the body shape parameters
β, the joint angles θ, and a fully-registered 3D mesh M for each point cloud in
the input sequence. The hands and feet in M may be collapsed because hands’
configuration can be different (the SMPL model assumes that the hands are
open) and the scanned person may wear shoes (the SMPL model assumes no
shoes). We consider that the appearance of the resulting 3D mesh is important,
so we do not reconstruct the hands and feet through this non-rigid registration.

3.3 Sparse representation of human shape deformation

The deformations of clothes (e.g. clothing wrinkles and folds) are difficult to
be reconstructed using only statistical shape models and pose parameters. We
employ the eigen-deformation method [9] to deal with such deformations. We
reason that the deformations can be represented by displacements from the skin-
tight model to the model with loose clothes and that the displacements can be
compressed to a low dimensional space.

If the angles of joints are the same but the orientation of the human body
is different, the values of the displacements will change. Therefore, we perform
the eigen-deformation method for each body part independently in each body
part local coordinate system. We compute the displacement vector dlk of the
k-th vertex of the l-th body part in mesh M ′, which is represented by dlk =
Hl(xlk − x′lk), where xlk and x′lk are the k-th vertices in the l-th body parts
in M and M ′. As mentioned above, every vertex is transformed to the local
coordinates of each body part using each rigid transformation matrix Hl. On
each body part, we concatenate these displacement vectors to make the column
vector d>l = (d>l1 d>l2 . . . ). We perform these calculations to each frame and
then aggregate these displacement vectors over all frames to obtain the matrix
D ∈ R(3×Kl)×F . Kl is the number of vertices that belong to l-th body part.
F is the number of frames used to perform PCA calculation. With the eigen-
deformation, we obtain bases (eigenvectors) El ∈ R(3×Kl)×L and coefficients
cl ∈ RL for each body part respectively. L is the number of bases. So, the
displacements in the low dimensional space is represented by

d̃lk = Elcl + dl, (7)

that is, a linear combination. This means that if we can regress the low dimen-
sional coefficients, unobserved deformations can be estimated.

When reconstructing M̄ , we firstly recover M ′ from β and θ, and then recover
d̃lk using a small number of eigen vectors. Finally H−1l d̃lk is calculated for each
vertex of each body part and added to M ′.
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3.4 Shape deformation bases and coefficients estimation by neural
network

We train two types of neural networks to estimate the detailed shape of the
clothed human from a given pose of the SMPL model: a coefficient regressor
network (called CRNN) [9], and a bases estimation network (called BENN).
BENN is composed of the CRNN with an additional output layer. In the layer,
the bases and the means calculated in the previous section are used as weight
and bias parameters and updated in training. This allows the network to output
more accurate displacements to regress the displacements directly.

We train one CRNN for each body part using the coefficients obtained from
the eigen-deformation of the displacement vectors as training data and the poses
Θ, which consist of the combination of the SMPL pose parameters θ and the
angle between each body part and the gravity as input. We reason that the
displacements of the vertices of a body part are affected not only by the motion
of adjacent body parts, but also by the motion of non adjacent body parts that
affect the deformation of the clothes. For example, when a person raises his arms,
deformations occur not only on the shoulders but also on the torso of the clothes
he wears. Therefore, for each body part we use the pose of multiple joints as
input for both the CRNN and the BENN. For each body part, the CRNN is
composed of four fully connected layers. As mentioned above, at any time, the
body pose is represented using a set of quaternions, which is calculated from
θ and an angle formed by the vertically downward Θ ∈ R5×G, where G is the
number of joints that used for each body part. Once the CRNN is trained, we
obtain the coefficients c̃ ∈ RL for any body pose Θ.

For each body part we also train a BENN, whose weights and bias are initial-
ized with those of the trained CRNN. The bases E and mean shape d obtained
at the end of the eigen-deformation stage are used as the initial weights and bias
of the additional output layer. The inputs of the BENN are the same as those of
the CRNN. The output of the BENN are the displacements d̃ ∈ R(3×Kl) of all
vertices that belong to the body part. The bases are determined by the output of
the BENN and the means of all bases are equal to the bias of the BENN( Fig. 2).
Finally, the displacement values are computed as:

d̃(Θ) = Wc̃(Θ) + b, (8)

where W is in R(3×Kl)×L and b is in R(3×Kl).

Here, when we train the BENN with partially observed data, the previous
step will be omitted. However the previous step is still necessary to get a good
initial value to converge quickly.

In our case, both network (CRNN and BENN) are implemented in Py-
Torch [16]. We choose the mean squared error as loss function and Adam al-
gorithm [10], which learning rate is set to 0.001 as optimizer. Examples of the
reconstructed shapes are shown in Fig. 4. The results of estimating bases is bet-
ter than only regress coefficient. Here, we do not perform eigen-deformation and
regression for not clothed body part (e.g.face and hands) because such parts
must not deform.
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Fig. 2. Network architecture of BENN. When the target data are partially observed,
we use visibility map not to calculate the gradient of unobserved body part.

3.5 Handling partially observed data

Our technique can efficiently handle partially observed data by training the
BENN using a visibility map to mask the loss of invisible body parts. The
visibility map represents whether each vertex of the mesh in the training dataset
is visible or not. The map can be created by detecting collisions between the ray
from each vertex to the principal point and each mesh. This allows us to back
propagate only from the unit of the output layer corresponding to the visible
body vertex. To utilize this mask based method, subjects have to show all body
parts at least once.

4 Experiment

To evaluate our method, we used the public dataset [22] and compared the results
obtained with our proposed method with the results obtained with previous
methods [24] [9] quantitatively and qualitatively. We also demonstrate the ability
of our proposed method to cope with partially observed data, which we created
from the public dataset [22]. We also captured a sequence of RGB-D images
of a moving person with three depth cameras and compared qualitatively the
results obtained with our proposed method with those obtained with the method
proposed in [26].

4.1 Non-rigid Registration using SMPL model

We performed non-rigid registration as explained in Sec. 3.2, to the meshes
publicly available from [22], which consists of people with loose clothes, and point
clouds captured by Kinect V2. Results are shown in Fig. 3, where the top row is
the target scan data and bottom row is the result of our non-rigid registration.
From the results, we can confirm that most parts of our fully registered mesh
(clothed mesh) are visually close to the original mesh. However, some differences
are still observable (e.g. there are some gap around crotch in Fig. 3 (c)). Although
this problem occurs only about 2% of the entire sequence, it can interfere with
the training of NN. Therefore, at this moment, problematic frames are manually
adjusted. We will investigate how to solve this problem in our future work.
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(a) (b) (c) (d)

Fig. 3. The result of non-rigid registration (Sec. 3.2). Top row shows target scan data
and bottom shows the result of non-rigid registration. (a) and (b) shows the result of
full-body target data(For the visibility, the target scans are showed with mesh which
is not used). (c) and (d) shows the result of partially observed data (dark gray means
invisible body parts and light gray means visible body parts).

Table 1. Average RMSE of each vertex position in mm. Ours means the result of
BENN. (The value of first row is cited from [24].)

Seq Bounc. Hand. Crane Jump. Mar. 1 Mar. 2 Squ. 1 Squ. 2

Yang et al. [24] 10.27 - 4.27 - 3.93 - 4.31 -

Kimura et al. [9] (CRNN) 5.45 3.45 7.61 9.24 3.06 8.25 3.20 7.36

Ours (BENN) 5.28 3.03 7.70 9.52 2.87 8.13 2.87 7.29

4.2 Inter-frame interpolation

In this section, we compare the reconstruction results obtained with our proposed
method with those obtained with the previous methods [9] [24] using the publicly
available dataset [22], which consists of human mesh with loose clothes. On one
hand, Kimura et al. [9] have the same strategy as our method, which means
that they also firstly fit the model to the target scan data and regress clothes
deformations. On the other hand, Yang et al. [24] calculate the displacements
between models and target mesh without fitting strategy. Instead, they assume
that the input scan data has mesh consistency.

Following Yang et al. [24], we also use 80% of each sequence for training
and others for testing. Although Yang et al. used 40 bases for regression, we
and Kimura et al. [9] (CRNN) use only 30 bases. The quantitative comparison
result is shown in Table 1. In this table, Ours means the result of BENN.
The table reports average of RMSE (root mean squared error) in mm of each
vertex. Here, because the density of vertices is different between the target point
clouds and our outputs, we could not simply calculate the error using one-to-
one correspondence of points between them. Therefore, we calculate the error
between clothed meshes obtained at non-rigid registration stage (Sec. 3.2) and
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Target data Kimura et al. [9] Ours
(CRNN) (BENN)

Fig. 4. Qualitative comparison using the public dataset. The left most column shows
target data, next two columns show the results of Kimura et al. [9] (CRNN) and last
two column show the results of the our proposed method (BENN). The second column
of each results shows error in color.(Blue = 0mm and red >= 50mm)

Fig. 5. Each left column shows the target scan data of non-rigid registration and right
shows the results of intra-frame interpolation. Even in the invisible body part the
clothes deformations are reconstructed well.

the results of our proposed method. It is reasonable to calculate the error in this
way because we use clothed meshes as training data for BENN. Our method
outperforms previous methods in most sequences while using less bases than
Yang et al. and the same amount of bases as Kimura et al.. The qualitative
comparison is shown in Fig. 4. The first column shows the target data of non-
rigid registration. Next two columns show the results obtained with the method
of Kimura et al. (CRNN) and the right two columns show the results obtained
with our proposed method. The first column of each set of two columns shows
the results of regressed deformation and the second shows the error with pseudo-
color (blue = 0mm and red >= 50mm). From these results, we can also confirm
that our proposed BENN works well qualitatively.

4.3 Intra-frame interpolation

Owing to our BENN implementation, we can ignore the invisible parts of the
scanned data. This allows us to use partially observed data to train our network.
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scan data Yu et al. [26] Ours

Fig. 6. Qualitative comparison with [26] using Kinect V2. Left column of each result
shows front view and right shows back-side view. Our result represents pose-dependent
deformation (e.g.clothes back). DoubleFusion has some artifacts (e.g.armpit), whereas
no artifacts in ours.

In this section, we estimate clothes deformations of such an invisible body part
using BENN trained with only the visible body part data. We performed intra-
frame interpolation to the partially observed data that we generated from the
public dataset [22]. We also captured a sequence of RGB-D images of human in
motion using Kinect V2 and performed intra-frame interpolation to compare the
results obtained with our proposed method with those obtained with DoubleFu-
sion [26], which is a real-time system that can reconstruct not only the human
inner body (optimized parameters of the SMPL model) but also the clothes that
the subject is wearing, with using a single depth camera (Kinect V2). The re-
sults are shown in Fig. 5 and Fig. 6. To obtain enough data for training, we used
the data which is visible from the front view and the data which is visible from
the back-side view as training data separately. Note that, we only use the dis-
placements of visible body parts to train BENN. Invisible body parts are recon-
structed through the regression step. These results show the effectiveness of our
proposed method to handle partially observed data. In Fig. 6, the first column
shows target data of non-rigid registration for our proposed method and input
data for DoubleFusion. Next two columns show the results obtained by [26] and
the right two columns show the results obtained by our proposed method. Here,
to obtain enough data for training, we used three Kinect V2 cameras, which are
placed in circle centered on the subject, to capture the sequence. Again, we use
the data which is visible from each view as training data separately. In the case of
DoubleFusion, the results were sometimes collapsed (e.g.head and armpit). This
means that this method deforms the node-graph and cannot describe the pose-
dependent deformations. Although the results obtained with DoubleFusion can
represent fine details of the clothes, they cannot describe the pose-dependent de-
formations because this technique only deforms the node-graph. In contrast, the
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results obtained with our proposed method could represent the pose-dependent
deformations (wrinkles around back side in Fig. 6). Again, we do not use the
displacements of the occluded body parts from the front view at the network
training step.

5 Conclusion

In this paper, we present a full-body human with loose clothes reconstruction
method from point clouds measurements using neural network based regressors,
even when the target data has largely occluded. Our fitting method and neural
network based regression outperform previous methods, which is proved by nu-
merical evaluations. Moreover, our BENN can also reconstruct full-body even if
the training data have only partially observed data. We visually confirm that
the regression ability is sufficient and better than previous method. We believe
that this method have a impact to many applications, such as AR/VR, virtual
try-on, avatar making, etc.
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