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Abstract

Simultaneous registration and shape fusion using 3D

scanners have been proposed for conducting wide-area and

dense 3D shape reconstruction. However, because the 3D

scanners for such a system must be robust and should pro-

vide feedback in real time, only a few devices are available,

thereby limiting the application of the technique. In this

study, we propose a new wide-area scanning algorithm that

only requires an off-the-shelf projector and a camera. In

our technique, the devices are not necessarily fixed to each

other and the relative positions of the devices as well as the

scene shapes can be precisely estimated by bundle adjust-

ment (BA) in case of structured light. To efficiently perform

shape registration, a robust and dense shape reconstruc-

tion is required, which is currently considered to be an open

problem for structured light systems. In this study, we sug-

gest a novel network-based feature detection algorithm as

well as shape fusion algorithm for the solution.

1. Introduction

Dense 3D shape reconstruction of large area is con-

sidered to be important for various applications such as

human body capture for medical systems, indoor room

modeling for augmented reality systems, and entire shape

acquisition for industrial purposes. To achieve this, si-

multaneous registration and shape fusion of sequentially

scanned 3D data have been extensively researched and de-

veloped [26, 21, 22]. For these algorithms, 3D sensors are

freely moved during the scan to cover a wide-area, there-

fore, a real-time 3D scanning capability is required. How-

ever, it is still not a easy task and only a few commercial

sensors fit the requirement [20, 1, 14], thereby, with only a

small number of options available for users.

As an alternative, the development of a projector and a

camera system using off-the-shelf devices can be a practi-

cal option. However, those scanning systems have not been

commonly used for wide-area scanning because of several

reasons. For some potential applications, one main reason

is the practical difficulty that is associated with fixing the

projector and camera with each other during the dynamic

scanning process. For example, if a video projector is used,

it is usually large and heavy and difficult to be fixed tightly

under the condition of SLAM-like process, where the sys-

tem is installed on a vehicle and encounters many bumps

and vibrations. Another typical condition can be found at

medical systems, e.g., endoscope or laparoscope systems.

Those systems are too small and complicated, and thus, it

is often impossible to tightly fix the pair of the devices. If

the relative position between the projector and the camera

is shifted, the pre-calibrated parameters will not be used,

thereby resulting in the failure of the entire scan.

In this study, we propose a new multi-frame reconstruc-

tion method which does not require the relative position

of the devices to be fixed, but estimates all the parameters

based on the bundle adjustment (BA). Although the origi-

nal BA for cameras assumes a certain amount of stable cor-

respondences, it cannot be applied to the structured light

systems because the projectors cannot be used to capture

images. To solve this problem, we introduce a shape fitting

algorithm that is inspired by the iterative closest point (ICP)

algorithm and the ICP cost is jointly minimized through the

process. After applying BA, since multiple shapes are pre-

cisely registered, they are fused into a global shape by trun-

cated signed distance function (TSDF) in our method.

In the paper, we also propose a oneshot shape-

reconstruction technique based on grid-based active

stereo [15, 31] with a learning-based approach using a con-

volutional neural network (CNN) and an efficient shape in-

terpolation technique using an anisotropic radial basis func-

tion (RBF). In our method, we design a single CNN, which

is expected to reduce the computational cost as well as in-

crease the accuracy. To increase the density as well as high

frequency, we introduce an anisotropic radial basis function

(RBF)-based shape densifying algorithm. The contributions

of our study can be given as follows:

1. a new BA technique for structured light systems to re-
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construct a consistent wide-area scene by performing

sequential scans is proposed;

2. a new grid-based active stereo technique using multi-

ple features, where two-directional parallel lines and

the codes are simultaneously detected from the cap-

tured patterns using a single CNN, is proposed; and

3. a new shape-interpolation and integration technique

using an anisotropic RBF and a weighted TSDF tech-

niques is proposed.

One practical application of our study is a 3D endoscope

in which the pattern projector cannot be fixed to the head.

We built a micro-sized projector and demonstrated a 3D en-

doscopic system to successfully recover large areas.

2. Related Work

The structured light technique has been frequently used

for practical 3D shape-capturing purposes [29, 32, 23].

Temporal and spatial encoding approaches are the two pri-

mary approaches that are used to encode the positional in-

formation into patterns. Because temporal encoding re-

quires multiple images, it is not suitable to install the system

in moving devices. Conversely, spatial encoding requires

only a single image, and it can be implemented in dynamic

and moving devices [20, 15, 19, 31]. Therefore, by em-

ploying such techniques, a projector-camera system can be

freely moved throughout the scanning process to achieve

wide-area shape scan. However, it is usually challenging to

fix an off-the-shelf projector to a camera. There is an inter-

esting solution for solving the aforementioned difficulty that

involves a change in the devices’ relative positions rather

than fixing them [8, 7]. However, this technique assumes

dense and precise correspondences between the camera and

projector; therefore, temporal coding is required and cannot

be applied to our purpose.

As we will explain later, our technique has resemblance

to ICP algorithm, in which multiple shapes are registered

by minimizing distances between closest points [2]. Al-

though the original ICP algorithm does not estimate the

scale changes, there have been several reports on tech-

niques that consider the scale changes in the ICP frame-

work [6, 18]; further, the scale changes and shape distor-

tions that are caused by the calibration errors are compen-

sated. To efficiently estimate those parameters, Garcia et

al. [11] used gray-code projection for obtaining dense cor-

respondences between multiple projectors and cameras and

used BA. Our technique is inspired by their report; how-

ever, we assume dynamic motion of either a projector or a

camera, and thus, their methods cannot be applied.

Another problem of spatial encoding methods is their in-

stability because that positional information is encoded into

small regions and the patterns tend to be complicated and

are easily affected and degraded by the environmental con-

ditions. To avoid such limitations, some techniques are ob-

served to be based on geometric constraints rather than de-

coding [16, 27, 24, 17, 31]. However, because such tech-

niques are still dependent on pattern detection, their results

are degraded to some extent. Although there are methods

that are available to compensate for such degradation of re-

sults [12, 13], they assume that multiple images are captured

by projecting multiple patterns; thus, these methods cannot

be applied to perform a one-shot scan. Recently, a solution

was proposed for the subsurface scattering objects [10, 28];

however, it required a specifically designed pattern, whereas

a general technique that used extensively varying patterns

was in considerable demand. In this study, we use fully con-

volutional neural networks (FCNNs) that can be referred to

as U-Nets [25] for decoding 2D grid-like patterns that are

projected onto the target. A U-Net is an FCNN architec-

ture that receives an image and produces a labeled image.

It is known to outperform previous FCNN architectures, in-

cluding the sliding window convolutional networks [4] in

segmentation tasks for medical images. Song et al. [30]

proposed to decode an active stereo pattern using a CNN.

In the final step, the shape integration of multiple scans

is required. Further, the signed distance field (SDF) repre-

sentation has been extensively used [5] and TSDF has been

recently proposed to achieve real-time system [21]. How-

ever, both techniques erase high frequency shapes.

3. Overview

3.1. System configuration

Our proposed 3D measurement system comprises a pro-

jector and a camera, as depicted in Fig. 1(left). We as-

sume that the devices are not necessarily tightly fixed to

each other. The temporally or spatially encoded patterns

are projected by a projector and captured by a camera; fur-

ther, these patterns are decoded to retrieve the correspon-

dences between the image and the pattern by the algorithm.

In the experiments, we used grid oneshot scan, which will

be explained in the next section. To show the strength of

our method, we actually developed an endoscopic system

(Fig. 1(right)) in our experiments. In the system, a fiber-

shaped micro pattern projector (a diffractive optical element

(DOE)-based pattern projector) is inserted through the in-

strument channel of the endoscope; the projector slightly

protrudes from the endoscope head, as depicted in Fig. 2(a),

and emits structured light. Because the micro pattern pro-

jector is smaller than the channel, the relative position and

orientation between the projector and camera varies through

scan.

3.2. Grid-based active stereo for endoscope

In the endoscopic system, we use the “grid pattern with

gapped codes” described in [10], which is based on grid pat-
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Figure 1. Schematics of the 3D measurement of projector-camera

and endoscopic systems.

(a) (b) (c)
Figure 2. DOE micro projector. (a) The projector inserted through

the instrument channel of an endoscope. (b) The projected pattern.

(c) The embedded codewords where S is colored in red, L is col-

ored in blue, and R is colored in green. S indicates the edges of

the left; further, the right sides exhibit the same height. L indicates

that the left side is higher, whereas R indicates that the right side

is higher.

tern projection [15, 27, 31]. The basic reconstruction algo-

rithm using a grid pattern projector can be given as follows.

First, a static grid pattern is projected onto the object

and is subsequently captured by a camera. Then, the grid

structures and marker points are extracted from the cap-

tured image. The extracted marker points are used for auto-

calibration to estimate the projector pose; note that since

the number of the marker is limited, the precision of the es-

timated poses is usually low and this is our motivation to

improve it. Because the pattern comprises a grid structure,

only the intersection points are considered to be candidates

for retrieving the correspondences between the captured im-

age and the pattern. Normally, there are several grid points

that are detected on an epipolar line on the captured image

which corresponds to a single grid point on the pattern. In

grid-based techniques, the consistency of the graph struc-

ture is efficiently used such that a single solution remains.

To increase robustness, different pattern features are used,

including the colored lines [31], modulated lines [27], or

gaps between adjacent edges [10].

The pattern that is used in our experiments is based on

[10] and depicted in Fig. 2(b). In the pattern, a discrete

feature (gap code) is attached to each of the grid points that

are represented by the level gap between the left and right

edges of the grid point. The classes of code are either S,

L, or R as denoted using different colors in Fig. 2(c). For

3D reconstruction, three types of features must be extracted

from the input image.
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Figure 3. Overview of the wide-area shape reconstruction by si-

multaneous registration and shape integration from multiple scans.

3.3. Basic procedure of the method

A sequence of images is captured by the camera while

the structured light is projected. Further, the 3D shapes are

recovered for each frame. The 3D reconstruction of each

frame comprises the three stages of pattern decoding, auto-

calibration, and 3D reconstruction, which are presented in

the flowchart in Fig. 3. The pattern decoding stage is pro-

cessed by CNNs that are trained to extract the grid-like

structures and the gap codes in the captured images. The

different types of features are simultaneously extracted us-

ing a single CNN. In the auto-calibration stage, the camera

parameters are self-calibrated by the method proposed in

[9] using the special markers detected by the CNN. This is

conducted because the projector and camera are not fixed

to each other. In the 3D reconstruction stage, the extracted

grid structures and code information are analyzed; further,

the IDs of all the detected vertical lines are decided by the

grid-based reconstruction method that has been previously

described, and the 3D curves are reconstructed using a light

sectioning method. All the estimated parameters and re-

covered shapes are used as a initial value to conduct BA to

refine the 3D shapes as well as the calibration parameters of

the projector-camera system, that can be referred to as ac-

tive bundle adjustment (active-BA). Finally, the integrated

shapes are constructed by the KinectFusion-like algorithm

based on TSDF.

4. Bundle Adjustment for Structured Light

4.1. Overview

A structured light system is used to capture a target scene

multiple times while the projector and camera system is

freely moved. Here, we describe the condition of our shape

acquisition, registration and integration process.

1. The target scene is rendered by a combination of data

obtained from the pattern projector and camera. Fur-

ther, the correspondences between the projected pat-

tern and the captured image can be obtained by ana-

lyzing the image, i.e., using a grid-based method [15].



The obtained correspondences is sparse because of the

feature of grid-based reconstruction.

2. The relative pose between the projector and the camera

can be uncalibrated.

3. The same scene is captured multiple times while as-

suming independent motion of the camera and the pro-

jector. We can denote a single capture of the scene as

a frame. There are no specific constraints that are im-

posed on the motions of the camera and projector.

4. The textural information of the scene is not used, i.e.,

the camera is used only for capturing the projected pat-

tern, but not the textures of the scene, because pro-

jected pattern is usually stronger than the textures.

5. In our technique, we do not implement explicit loop

detection algorithm, so if a drift becomes so large that

correspondences cannot be found, our technique will

fail. If correspondences are found, our technique ef-

ficiently spread the accumulated errors to entire scene

evenly to achieve consistent shape reconstruction.

The objective of this study is to generate a integrated

shape when multiple shape measurements are being consis-

tently merged. This should be applied, for example, on the

described 3D endoscopic system or any projector-camera

system that is used for measuring the 3D shape of a wide

area while a projector and a camera cannot be tightly fixed

each other.

A naive method to achieve the objective would be to

generate 3D reconstruction frame-by-frame and to align

the 3D reconstructed shapes using an ICP algorithm.

If the projector-camera poses are uncalibrated, they can

be auto-calibrated using the projector-camera correspon-

dences. However, such an approach is problematic. The

auto-calibration results exhibit genuine ambiguity in terms

of scales. Furthermore, the low-precision relative poses be-

tween the projector and the camera cause distortion in 3D

reconstruction. Because of scale inconsistencies and shape

distortions, the shapes from different frames do not fit con-

sistently even after the ICP algorithm is applied.

Instead, we use a BA technique, where the information

obtained from the measurements of multiple frames is used

as a single solution. Unlike the BA that is conducted when

only a camera is used, the texture of the scene cannot be

used in BA because the projector cannot be used to capture

an image. Therefore, we cannot use the information from

“a single point captured from different frames” (note that

the projected patterns are not fixed to the scene). Overall,

the BA technique cannot be applied without performing any

modification.

By considering the defined objective and its associ-

ated problems, the only usable constraint between different

frames is that their shapes should be fit by a rigid transfor-

mation. The ICP algorithm has been a common tool for

dealing with this type of constraint. Therefore, we propose
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Figure 4. Active bundle adjustment correspondence finding pro-

cess. This process is equivalent to ICP.

the usage of an iterative algorithm when the ICP algorithm

and BA techniques are combined. In the proposed process,

the shapes of different frames are aligned with the ICP al-

gorithm, and inter-frame correspondences are obtained with

the ICP-inspired method. Using the inter-frame correspon-

dences, BA is processed to obtain a better fitting between

the shapes of different frames. These processes are repeated

until convergence of BA. We can refer to the proposed al-

gorithm as active-BA.

4.2. Active bundle adjustment

The steps of active-BA can be given as follows:

Step 1 The initial parameters of the relative pose between

the projector and the camera as well as the positions of

the shapes of the frames are given as input.

Step 2 The 3D shape for each frame is reconstructed from

the current pose information.

Step 3 The corresponding points between different frames

are sampled using a proximity relation between the

frame surfaces, which is similar to the process that is

used to retrieve the corresponding point pairs in the

original ICP algorithm.

Step 4 Using the obtained inter-frame corresponding

points, the corresponding intra-frame information,

which is assumed to be known by spatial coding, is

propagated to another frame.

Step 5 Using the corresponding intra- and inter-frame in-

formation, an algorithm which minimizes both of the

reprojection errors of 3D points within each frame and

distances between the corresponding points between

different frames. Using all the output poses, dense 3D

shapes and the relative position between the frames are

updated.

Step 6 The above steps are repeated until convergence.

For the relative pose of Step 1, the precision of the initial

relative pose may be low; however, it should be sufficiently

precise to achieve convergence.

In Step 2, if the correspondences between the pro-

jected pattern and the camera image is sparse, the recon-

structed shape becomes sparse. It is difficult to align the

sparse shapes because the correspondence points between



the frames are observed to be small (note that the ICP algo-

rithm does not work between sparse points). Thus, we apply

a shape interpolation method to densify the reconstructed

shapes. In our method, normal vectors are obtained by 2D

regression for each point of the coarse shape data, and RBF-

based interpolation is applied using the normal information.

Step 3 is described using Fig. 4. Let the camera and

the projector of frame k be Ck and Pk, respectively. By

processing the image of frame k (captured with Ck), the 2D

correspondences between Ck and Pk are obtained. Let the

jth pair of correspondences be a pair of uc
k,j of Ck and u

p
k,j

of Pk. The 3D point obtained by the triangulation of uc
k,j

of Ck and u
p
k,j of Pk can be denoted by pk,j. Further, for

all the correspondence pairs, frame k is reconstructed (i.e.,

repeated for j).

Let frame l be another frame; further, all the correspon-

dence pairs of frame l are also reconstructed. If the recon-

structed points pl,j are sparse, they should be interpolated,

and the depth image Dl with the view Cl is obtained. Fur-

ther, pk,j is projected onto Dj using the pose and intrinsic

parameter of Cl. If the projected pixel is a valid 3D point,

we can define this point in the corresponding point of pk,j

in frame l. This corresponding point is πl(pk,j). The 2D

projection of πl(pk,j) can be calculated using the camera

Cl and projector Pl. Let these 2D points be vc
k,j,l and v

p
k,j,l,

respectively. pk,j and πl(p
c
k,j) are corresponding points be-

tween different frames. Generally, they are different but are

the neighboring points of frames k and j.

In our algorithm, we calculate BA-style reprojection er-

rors of the points pk,j and πl(p
c
k,j), respectively within each

frames (k and l), and the distance errors between the corre-

sponding points. Then, the total cost to be minimized is the

weighted sum of reprojection errors of all points pk,j and

distance errors of all the pairs of pk,j and πl(p
c
k,j).

The cost function to be minimized is as follows:

L(I, E, P ) =
∑

k

∑

j

{reproj(pk,j; ICk
, ECk

)

+ reproj(πl(p
c
k,j); IPk

, EPk
)
}

+ wc|pk,j − πl(p
c
k,j)|

2

+ wb{S(E)− Const}2 (1)

where ICk
and ECk

are intrinsic and extrinsic parameters of

camera Ck, IPk
and EPk

are intrinsic and extrinsic param-

eters of projector Pk, reproj() is BA-style reprojection er-

rors, I is the set of intrinsic parameters ICk
and IPk

, E is the

set of extrinsic parameters ECk
and EPk

, and P is the set

of pk,j and πl(p
c
k,j). L(I, E, P ) is minimized with respect

to I ,E and P . S(E) is a scale function that determines the

scale of the scene, and Const is a constant value. For exam-

ple, S(E) can be the sum of distances between the positions

of the camera or projector for all the frames. We can use the

sum of distances for randomly sampled devices and frames
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Figure 5. Structure of the U-Net used for feature detection

(line/gap code). The numbers represent the dimensions of the fea-

ture maps.

to reduce computational costs. wc and wb are weights for

cost terms. Without the term wb(S(E) − C)2 that fix the

scale of the scene, the whole scene may shrink with simi-

larity transform infinitely, since shrinking the scene reduces

the distances |pk,j−πl(p
c
k,j)| without effecting reprojection

functions.

In real applications, such as the endoscopic systems in

this paper, intrinsics parameters of the camera for all frames

k is the same. Thus, we use a common intrinsics for all k.

The active-BA can be regarded as a variation of the ICP

algorithm, where ICP is used to estimate only a rigid trans-

formation between the frames; however, in this study, the

proposed algorithm estimates the projector-camera relative

pose, which deeply affects the shapes of the frames.

5. Implementation

5.1. Simultaneous detection of grid structures and
codes

We propose the extraction of grid structure and gap-code

information using U-Nets [25]. The structure of the network

is depicted in Fig. 5. The numbers in the figure represent

the dimensions of the feature maps. Due to this network

structure, both the fine and coarse resolution features can be

learned. By applying U-Net to an image, feature maps can

be generated in the same size as that of the input image. In

Fig. 5, the output layers are divided into three groups, each

comprising the vertical, horizontal lines, and gap-codes.

The training process of U-Net for vertical-line detec-

tion is as follows. First, the image samples of the pattern-

illuminated scene are collected. Further, the vertical line

locations for the image samples are manually annotated as

curves of 1-dot widths. Because the 1-dot width curves

are considerably narrow to be directly used as labeled re-

gions of teacher data, regions with 5-dot width to the left

and right sides of the thin curves are extracted and are la-

beled as teacher data (Fig. 6). The line detection and code

detection are simultaneously processed using a single U-

Net. The training data for code classification are depicted

in Fig. 6.
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Figure 6. Training data: (top row, left to right) sample image,

manually annotated vertical line, labeled image for training ver-

tical line detection; (bottom row, left to right) manually annotated

vertical line, labeled image for training horizontal line detection,

manually annotated code data, labeled image for training code de-

tection.

Figure 7. Samples of CNN output after training with data aug-

mentation, (left to right) Sample images, output of vertical line

detection, horizontal line detection, and code detection results.

The U-Net is trained using the loss function of the soft-

max entropy. In this training process, we augment the train-

ing data by adding noise and scaling the intensity because

the intensity of the illuminated patterns may considerably

change. Examples of the U-Net output are depicted in

Fig. 7. Further, the dark, bright, noisy images with different

grid sizes and up to 40-degree rotation are processed accu-

rately.

By applying the trained U-Net to the image, the 3-way

labeled image for vertical line detection is obtained, where

the left and right sides of the vertical curves are labeled as 1

and 2, respectively (the green and red regions in Fig. 7). By

extracting the borders between these regions, curves can be

detected.

The classification of gap codes can be processed by di-

rectly applying U-Net to the image signal and not from the

line detection results. Thus, the gap code estimation does

not depend on line detection, which is an advantage because

the line detection errors do not propagate to code decoding.

5.2. RBF-based shape interpolation

To achieve stable calculation of the inter-frame corre-

spondences, the sparse 3D points that are obtained from the

sparse projector-camera correspondences should be densi-

fied. To achieve this, we use an RBF for interpolation of the

3D curves [3].

The interpolation sizes are defined by RBF functions. In

case of using an isotropic RBF, to interpolate the pixels be-

Table 1. Residuals of planes (RMSE [mm]) and plane angles

(ground truth is 90
◦) for our method and KinectFusion (config-

urations shown in Fig. 10).

Initial Proposed Kinect

Fig. 10(b) (c) (d)

Plane 1 4.64 1.34 3.12 1.95 2.40

Plane 2 6.63 1.52 2.08 1.74 1.38

Angle 78.3 91.6 90.0 84.8 70.1

tween adjacent lines of the grid, the scale parameter of the

Gaussian should be larger or approximately equal to the ap-

parent sizes of the grid in the captured images. However,

this setting often oversmooths the measured shape features

of the 3D curves, which can be accurately reconstructed by

the light sectioning method.

To overcome this oversmoothing problem, we propose

the use of an anisotropic RBF in which the kernel shape

is observed to be long with respect to the direction that is

perpendicular to the grid line. In a simple case in which

the reconstructed lines are vertical in the image plane, we

use a Gaussian kernel that is narrow in the vertical direc-

tion (anisotropic RBF). In this case, the vertical size of the

kernel becomes 0.3 times of the original size. Further, the

shape features along the line direction are expected to be

preserved more than isotropic RBF.

6. Experiment

6.1. Evaluation of active bundle adjustment for a
structured light system

To evaluate active-BA, we capture a scene multiple times

(19 sets in the experiment) using the projector-camera sys-

tem. A grid pattern is projected onto the object and the im-

ages are captured by the camera. The relative positions of

the projector and the camera are slightly different for each

frame to simulate the loose connection.

Under these conditions, auto-calibration and 3D recon-

struction are processed for each frame. Because of frame-

wise auto-calibration, the scales of different frames are in-

consistent; further, calibration errors are also present. To

create meaningful results from the auto-calibration method,

we set a constant value as the baseline for all the frames. To

emphasize the calibration errors, we also added Gaussian

noise to the extrinsic parameters.

Using these data, the result of ICP alignment for the

initial shapes and the result of the active-BA are shown

in Fig. 8. While the result of aligning the initial shape

exhibits considerable differences between different frames,

the differences that are present in the result of active-BA are

drastically minimized. We also scan the same object using

KinectFusion [21] and results are shown in Fig. 10. Since

there is no loop closure mechanism on KinectFusion, incon-

sistent shapes are reconstructed after entire shape scan.

For performing the evaluation, we apply plane fitting to



Plane 1 Plane 2

Figure 8. Active bundle adjustment results: (left to right) two cap-

tured images, before and after active bundle adjustment.

Figure 9. (Left) Camera and projectors’ positions and recon-

structed points before/after BA. Yellow/cyan for cameras, or-

ange/azure for projectors and red/blue for points. (Right top) 3D

points before BA and (right bottom) after BA.

(a) (b) (c) (d)

Figure 10. (a) single captured shape by Kinect v1, (b) KinectFu-

sion result with single rotation around the object, (c) two times

rotation and (d) three times rotation. Note that since there is no

explicit loop closure mechanism on KinectFusion, a large incon-

sistency in shape remains even if several rotations are conducted.

each plane of the object and calculate both the distances

from the estimated planes as depicted in Fig. 8, and the RM-

SEs relative to the ground truth shapes are given in Table 1.

Results indicate that our technique can successfully recover

consistent shapes because of simultaneous optimization ap-

proach considering loop closure.

Table 2. RMSE of each result.
Fig. 12(b) Fig. 12(c)

Anisotropic RBF Isotropic RBF

RMSE 1.60mm 1.74mm

6.2. Evaluation of the effect of anisotropic RBF and
TSDF-based shape fusion

To evaluate the anisotropic RBF, we scan a seashell-

shaped piece of soap (Fig. 11) including isotropic RBF, and

compare the results with the ground truth. The results are

(a) (b) (c)
Figure 11. Grid and code detection results for seashell-shaped

soap: (a) the appearance of the sample; (b) the captured image;

and (c) extracted grid structures and codes using U-net

(a) (b) (c)
Figure 12. Comparison with the ground truth of a seashell-shaped

piece of soap: (a) ground truth captured by gray code; (b) our

method with anisotropic RBF; (c) our method with isotropic RBF.

presented in Fig. 12 and Table 2. Our proposed method that

uses the anisotropic RBF features the finest details, and its

RMSE is the optimal as compared to isotropic RBF.

6.3. Active BA and shape integration with TSDF
using the endoscopic system

We apply our online shape registration and merging al-

gorithm to the static objects, i.e., phantom of stomach, and

results are presented in Fig. 13. In Fig. 13(top), the area of

the recovered shape from a frame of the captured sequence

is shown by the blue polygon. Fig. 13(bottom left) depicts

the captured image of the region highlighted by the yellow

rectangle in top figure, where the grid pattern is projected to

the surface. In the image, the grid lines are disconnected by

the high-frequency shape of the model surface and shapes

are distorted, as depicted in Fig. 13(bottom right). The in-

tegrated shape generated by active-BA and the online regis-

tration and merging algorithm is depicted in Fig. 14(bottom

row). A large area is successfully recovered, and the high-

frequency shape details are retained. For performing com-

parisons, we scan the same object with KinectFusion [21]

and the result is presented in Fig. 14(top row); the shape is

heavily distorted because of sparse reconstruction without

consistent shape recovery algorithm. RMSE is 3.63mm for

our active-BA, whereas 4.55mm for KinectFusion.

Please refer to the supplementary materials for more vi-

sual results

6.4. Active BA and shape integration for wide area
using projector and camera system

To confirm the strength of our method for common pro-

jector and camera based system, we scan the entire room

using the pro-cam system as shown in Fig. 15. We rigidly



1 frame area

Fused area

Figure 13. (Top) the phantom

model; (bottom left) the cap-

tured image of the yellow rect-

angle in top figure; and (bottom

right) the CNN result.

Figure 14. (Upper row) results of KinectFusion, and (bottom row) results of our method. Ground

truth 3D shape is also shown in the figures. Note that shapes are heavily distorted by KinectFusion,

whereas our technique can recover consistent shape because of global optimization by BA.

attached projector and a camera using professional camera

tools, however, since projector is heavy, there is a possiblity

that slight motion occurs during moving the system. More

importantly, calibration of such in-out scenario is usually

not easy, because it is usually difficult to prepare large cal-

ibration objects. We apply common calibration technique

using natural feature points, which are extracted from the

scene for initial shape reconstruction. For comaprison, we

conducted a projector and a camera calibration technique

using BA [7]. Since the system is tightly fixed, results are

mostly comparable, thereby effectiveness of our method is

confirmed. Note that if the projector and the camera’s rela-

tive position is moved, the technique [7] cannot be applied.

Please refer to the supplementary materials for more vi-

sual results

7. Conclusion

We propose and demonstrate a wide-area scanning tech-

nique using an off-the-shelf projector and camera. The pro-

jector and camera are not required to be fixed with each

other and can be freely moved to scan the entire shape of

the target object or wide region of the scene. The shapes

and relative position between the projector and the camera

can be precisely estimated using our technique that can be

referred to as active-BA. Because the technique uses ICP

to retrieve the correspondences between frames, a robust

and dense reconstruction is required. For performing robust

shape reconstruction, a single U-Net based network is si-

multaneously used for both line detection and code-based

segmentation. Finally, using our method, wide-area 3D

shapes can be successfully reconstructed from both small

and large scene. In future, we intend to develop a real-time

system for autonomous robot-based navigation.
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Figure 15. Wide-area with “loop closure.” The room, size

3m×5m, was captured by a camera and a projector system, which

are tightly fixed each other. Although some parts look discon-

nected because of visualization reason, shapes are densely cap-

tured and closed.
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