
Self-calibration of Multiple Laser Planes for 3D Scene Reconstruction

Ryo Furukawa
Faculty of Information Sciences,
Hiroshima City University, Japan

ryo-f@cs.hiroshima-cu.ac.jp

Hiroshi Kawasaki
Faculty of Information Engineering,

Saitama University, Japan
kawasaki@cgv.ics.saitama-u.ac.jp

Abstract

Self-calibration is one of the most active issues concern-
ing vision-based 3D measurements. However, in the case of
the light sectioning method, there has been little research
conducted on self-calibration techniques. In this paper, we
study the problem of self-calibration for an active vision
system which uses line lasers and a single camera. The
problem can be defined as the estimation of multiple laser
planes from the curves of laser reflections observed from a
sequence of images captured by a single camera. The con-
straints of the problem can be obtained from observed in-
tersection points between the curves. In this condition, the
problem is formulated as simultaneous polynomial equa-
tions, in which the number of equations is larger than the
number of variables. Approximated solutions of the equa-
tions can be computed by using Gröbner bases. By refining
them using nonlinear optimization, the final result can be
obtained. We developed an actual 3D measurement system
using the proposed method, which consists of only a laser
projector with two line lasers and a single camera. Users
are just required to move the projector freely so that the pro-
jected lines sweep across the surface of the scene to get the
3D shape.

1. Introduction

In the field of computer vision, calibration methods for
two or more cameras have been studied extensively.

Especially, self-calibration methods for extrinsic param-
eters, in which 6-DOF pose parameters are estimated with-
out a-priori information about the scene, have been studied
by many researchers; these studies include passive systems
[7] and active systems [15, 13] because of their usefulness
and mathematical interest.

There are other kinds of calibrations. For example, in
order to construct or use a range finder based on the light
sectioning method, the relative position of the laser plane
from the camera should be known. This may involve cali-
bration to estimate the 3-DOF parameters of the plane. Ex-

amples of this kind of calibration are methods using objects
of known shapes. Also, there are on-line calibration tech-
niques using markers attached to fixed positions relative to
the laser planes [9].

In the case of the light sectioning method, there has been
little research on self-calibration. One of the reasons may be
that it is not possible to form equations sufficient for solving
the problem with a typical system formed by a camera and
a line laser. This is in contrast to the case of stereo cam-
era systems, in which much information is retrieved from
a pair of images. Actually, redundant information obtained
from the reflections of a line laser which can be used for
self-calibration is very limited in comparison to stereo cam-
era systems. One example to solve this problem is to fix
the laser plane and the camera, and to scan the same scene
multiple times using a mechanical platform[12].

Another approach is to use the information from multi-
ple planes with the fixed scene to obtain more constraints,
which is discussed in this paper. To achieve this, two meth-
ods can be considered: one is to project multiple laser
planes from a projector which is composed of multiple line
lasers, and the other is to capture a sequence of images by
moving the laser projector. Either way, new equations can
be formulated from the intersections of the detected curves
of the laser reflections. If we can acquire a sufficient num-
ber of equations, the calibration problem may be solved.

In this paper, we study the problem of self-calibration
by using a sufficient number of equations derived from the
intersections of the multiple laser planes detected in a sin-
gle image or a sequence of images. Formulation of this
problem involves simultaneous polynomial equations with
a large number of variables. These equations are difficult to
solve. We show that, in some configurations, the problem is
solvable and we provide a method to obtain numerical solu-
tions. The solution is obtained by computing approximated
solutions by using Gr̈obner bases and refining them using
nonlinear optimization.

To test the proposed method, we developed an actual 3D
measurement system, which consists of only a laser projec-
tor with two line lasers and a single camera. Because the



system is self-calibrated, users can start 3D scanning with-
out any pre-calibration process and freely move the projec-
tor so that the projected lines sweep across the surface of
the scene to get the 3D shape.

2. Related works

There are many existing commercial products which use
the light sectioning method [5, 11]. With such systems that
use the light sectioning method, the laser plane is fixed, or
moved by precision mechanical devices. For these systems,
laser plane calibration is required only once and precise cal-
ibration can be applied previously[19, 16].

On the other hand, in the case of a handheld 3D scan-
ner, which is recently attracting wide attention because of
its maneuverability and simplicity, the relationship between
the laser plane and the camera position varies every time
and must be calibrated on-line.

For example, Woo and Jung [2] have proposed an ex-
plicit calibration method; that is, they put a cubic frame in
the field of view of the camera, and place an object inside
this frame. Then, a laser emits a line beam to the object,
and they can detect the bright point on the cube to esti-
mate the pose of the beam plane and the 3D information.
Bouguet and Perona [1] use shadows to calibrate the laser
plane. They cast shadows on the known plane and esti-
mate the parameters. Fisher et al. [8] have modified this
idea. Furukawa and Kawasaki [9] have adopted a more ac-
tive method. They place LED markers on the sensor itself
and capture the markers with a single camera to estimate
the laser plane. The abovementioned methods can solve the
on-line laser plane calibration problems, however, they still
have some drawbacks: for example, they require an object
of a known shape [2, 1, 8] or markers [9] to be captured in
the same frames for calibration.

Note that there are some handheld 3D scanners in which
the laser plane projector and a camera are at a fixed posi-
tion to each other [10, 18]. Such devices require laser plane
calibration only once, therefore, the on-line laser plane cal-
ibration is not usually necessary.

There is another handheld 3D scanner which uses a laser
plane only for the robust retrieval of correspondences for
stereo vision [6]. With this system, the parameters of the
laser plane are not used, so the calibrations are not per-
formed.

As mentioned above, although many explicit calibration
methods for the light sectioning method have been pro-
posed, no self-calibration method for movable laser planes
has yet been proposed. This is mainly because a projected
pattern on an unknown object from a single line-laser pro-
jector does not provide enough constraints for a solution.
In this paper, we achieve self-calibration for the light sec-
tioning method by using multiple line lasers. With our pro-
posed method, all extra devices for explicit calibration of
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Figure 1. Configuration of the active vision
system.
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Figure 2. Points of intersection of the reflec-
tion curves.

laser plane can be eliminated; thus, the user can arbitrarily
place a camera and freely move the laser projector without
requiring known objects or attached markers to be captured
in the frames.

3. Self-calibration for laser planes and camera

3.1. Problem definition

The minimum configuration of our target active vision
system consists of a camera and a line laser projector, as
shown in Figure 1. The intrinsic parameters of the camera
such as the focal length are assumed to be known. Laser
line projected from the projector is reflected at the surfaces
of the scene and detected by the camera as curves in the
images. We call these curves “reflection curves.”

A scanning process is performed by capturing a se-
quence of images with a fixed camera and moving the pro-
jector back and forth either manually or mechanically. Mul-
tiple reflection curves are obtained from the image sequence
since they move in the image with the motion of the pro-
jector. The problem to solve is the estimation of the posi-
tions of the projected laser planes from the observed reflec-
tion curves. Once the positions of the laser planes become
known, reconstruction of the 3D shapes of the scenes can
be performed by triangulation.



By drawing all the reflection curves in different frames in
a common image coordinates, those curves generally have
intersections (Figure 2). Since the camera is fixed, an in-
tersection of reflection curves corresponds to a 3D point on
the scene. The point is on both of the two laser planes gen-
erating the curves. Therefore, we can acquire simultaneous
equations using equations of laser planes and the observed
coordinates of intersections as follows.

A plane which is not parallel to the z axis can be rep-
resented asax + by + z + c = 0 with a,b, and c as its
parameters. Suppose that two planes whose indices arei
andj and a surface have an intersection. The position of
the point is(ui,j , vi,j) in screen coordinates. Let the depth
of the intersection from the camera beti,j , then the 3D point
(ui,jti,j , vi,jti,j ,−ti,j) is on the planesi andj. Thez co-
ordinate is negative since we assume the z-axis is directed
backward from the camera. Representing the parameters of
the planei by ai, bi, ci,

ai(ui,jti,j) + bi(vi,jti,j) − ti,j + ci = 0,

aj(ui,jti,j) + bj(vi,jti,j) − ti,j + cj = 0. (1)

These equations can be obtained from all the intersections.
If the number of lines isn and the number of points of

intersection ism, the total number of unknown parameters
is 3n+m, while the number of the constraints is2m. Obvi-
ously, the solutions are not fixed if the number of variables
exceeds the number of equations. Therefore,3n+m ≤ 2m
(i.e., 3n ≤ m) is a necessary condition for this problem to
have a finite number of solutions.

If we use multiple line lasers with fixed spatial relation-
ships instead of a single line laser, additional constraints can
be introduced between planes.

For example, suppose a laser projector which consists of
two line lasers is aligned precisely at 90 degrees, as shown
in Figure 3 (a). Using laser planes with different colors,
these planes can be easily distinguished. Then, two differ-
ent reflection curves, each of which corresponds to one of
the laser planes, can be acquired from an image. FromN
images,2N reflection curves are observed. Simultaneous
equations can be obtained in the same way as the case of the
single line laser. Additional constraints are that two laser
planes observed in the same image are perpendicular to each
other. Indexing the laser planes at imagek(0 ≤ k ≤ N −1)
as the2k-th and(2k + 1)-th planes leads to this equation:

a2ka2k+1 + b2kb2k+1 + 1 = 0. (2)

Using more laser planes attached to the projector, more con-
straints can be obtained.

In some conditions of the problem, the scaling factor
of the scenes cannot be fixed. Typical examples of these
conditions are the cases where a single laser plane or two
laser planes are used. In these cases, an additional equation
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Figure 3. A laser projector with two line
lasers: (a) the configuration of the projector,
(b) the grid pattern formed by moving the pro-
jector.

should be used to avoid an ambiguity of the solutions. The
equation is

t0,0 = 1. (3)

An example of the opposite case is that, when multiple line
lasers are placed in parallel, the scaling of the scene can be
determined.

3.2. Examples of configurations

For the problem defined in Section 3.1 there are various
system configurations in which the combination of two or
more line lasers can be considered. These compositions are
roughly classified into two methods.

The first method utilizes a sequence of measurements.
In this case, the sequence of captured images with the laser
projector moving and projecting the reflection curves onto
the object, are used. By accumulating multiple captured
images into one, intersections of projected laser curves are
obtained to formulate the equations.

The other method is the case in which self-calibration
can be performed from a single measurement. If enough
line lasers are fixed to a device with their spatial relation-
ships known, the position information of the device can be
estimated from only one image.

3.2.1 Solution using a sequence of measurements

In the case of configuring a laser projector with only a small
number of line lasers, the configuration of two line lasers
fixed at a certain angle gives a minimum configuration of
line lasers in a projector in order for the problem to be solv-
able.

Let us consider the cross-plane laser projector mentioned
in Section 3.1 (Figure 3 (a)). When we move the laser pro-
jector along a slanted line and capture 5 images as shown
in Figure 3 (b), we can obtain a 5× 5 grid pattern and 25
intersections. Then, the number of planes is 10 and the un-
known parameters for the planes are 30 and 25 for depth.
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Figure 4. Configurations of laser projectors
with multiple line lasers.

Thus, the number of total unknown parameters is 55. There
are 50 equations for the intersections and 5 constraints of
perpendicularity. With this configuration, uncertainty re-
mains for the scaling factor; therefore, by adding the forms
of equation (3), we have 56 equations. These simultaneous
equations have finite solutions and can be solved. We will
explain the details in Section 4.

Note that, a laser projector made of a single line laser
is the simplest configuration; however, with this configura-
tion, the simultaneous equation does not have finite solu-
tions and cannot be solved. It is provable, but we ommit
the proof because of the limited number of pages. The fact
that the single-line-laser configuration is not solvable also
shows the importance of the constraints of perpendicularity,
since they are the only difference between the single-line-
laser configuration and the two-line-laser configuration.

3.2.2 Solution using a single measurement

In the case that four or more line lasers are attached to the
projector and many intersections are observed at once, it
is possible to perform self-calibration from a single image
depending on the configurations.

For example, suppose that four line lasers are attached
to a projector at known angles and six intersections are ob-
tained from one image, as shown in Figure 4(a). By follow-
ing the formulation described previously, 18 (i.e.,4×3+6)
unknowns and 18 (i.e.,6× 2 + 6 ) constraints are obtained.
In this case, it is possible to perform a self-calibration from
one view. If five line lasers are used as shown in Figure 4
(b), more constraints can be used and the solution can be es-
timated more precisely. In order to arrange many line lasers
on the projector, aligning them to form a parallel or radiate
grid is a practical method (Figure 4 (c)). If a parallel grid
is adopted, it is also possible to determine scaling factor,
making use of information on the intervals of the grid.

In these cases, it is easier to solve the problem by rep-
resenting the relative pose between the projector and the
camera as a maximum of 6-DOF parameters, rather than
using the parameters of all the planes. Under the formula-
tion using the relative pose as the parameters, the problem

becomes very similar to the the problem of self-calibration
of the extrinsic parameters of a pair of cameras used in the
stereo vision system. If all the laser planes share one point,
the problem becomes equivalent to self-calibration between
pinhole cameras, which can be solved by using the inter-
sections of the reflection curves as correspondence points.
The case where all the laser planes do not share one point is
equivalent to the self-calibration between a pinhole camera
and a generalized camera.

4. Range finder by projecting a cross-shaped
pattern

4.1. System configuration

From the configurations described in the previous sec-
tion, we developed a numerical solver for the case of two
laser planes which intersect perpendicularly.

The reasons we adopted this setup are as follows: (1)
as mentioned previously, it is the simplest solvable setup
which requires the smallest number of line lasers, (2) dis-
tinction of the two laser planes can be easily achieved by
using red and green line lasers, which are available as off-
the-shelf products, and (3) mounting two planes perpendic-
ularly is easy.

The actual scanning is performed as follows. First, we
take five images while moving the projector, so that the
reflection curves form a grid. Then an initial solution is
obtained under the approximation of orthogonal projection
(this process is described in Section 4.2). The solution is re-
fined by a nonlinear optimization (this process is described
in Section 4.4). The refined result of the self-calibration
can be used for estimating the poses of the projector for all
the frames in the image sequence and reconstructing the 3D
scene.

4.2. Approximation for initial solution

In this section, the numerical solution for the problem
described in Section 4.1 will be given. A brief descrip-
tion of the solution is as follows. First, the equation system
which consists of 55 variables, 51 linear equations, and five
quadratic equations is obtained from five images by approx-
imating this problem using the assumption of orthogonal
projection. This equation system can be converted to five
quadratic equations with four variables by solving the linear
equations. The converted simultaneous quadratic equations
can be solved using Gröbner bases. Although the solution
is for the approximated problem, the solution of the original
problem can be obtained by performing nonlinear optimiza-
tion using the obtained solution as initial parameters.

The reason for solving the approximated problem in-
stead of the original one is that, since the original problem
includes many (55) quadratic equations, the calculation of



Gröbner bases of the original equation set is intractable and
the numerical solution cannot be obtained. By approximat-
ing the problem using the assumption of orthogonal pro-
jection, most of the equations become linear, resulting in
only five quadratic equations with four variables. So, by
reducing the scale of the problem using approximation, it
becomes possible to apply the numerical solving method
using Gr̈obner bases [3, 4].

Let the parameters of the vertical plane for thei-th im-
age be(av,i, bv,i, cv,i). The same goes for the horizontal
plane, whose parameters are(ah,i, bh,i, ch,i). By limiting
the intersections to those between the horizontal and verti-
cal curves, a point can be indexed by two numbers: the im-
age indices of the horizontal and vertical curves that form
the intersection. Let the intersection of the vertical curve on
the i-th image and the horizontal curve on thej-th image
be expressed as intersection(i, j). Also, let the depth of
intersection(i, j) be ti,j , and the image coordinates of in-
tersection(i, j) be(ui,j , vi,j), using the screen coordinates
of a normalized camera. From the forms of equation (1), we
can obtain the simultaneous equations as follows:

av,i(ui,jti,j) + bv,i(vi,jti,j) − ti,j + cv,i = 0,

ah,j(ui,jti,j) + bh,j(vi,jti,j) − ti,j + ch,j = 0, (4)

for 1 ≤ i, j ≤ 5. The forms of equation (2) lead to

av,iah,i + bv,ibh,i + 1 = 0 (5)

for 1 ≤ i ≤ 5.
Now, we assume orthogonal projection. As already men-

tioned, using the configuration of two planes, the scaling of
the object remains ambiguous. Therefore, we can assume
that the distance to the object is a value near 1. Suppose the
variation ofti,j is sufficiently small and allti,j are near 1
(i.e., when the assumption of orthogonal projection can be
applied), then, using the the forms of equation (4) can be
transformed to

av,i(ui,j) + bv,i(vi,j) − ti,j + cv,i = 0,

ah,j(ui,j) + bh,j(vi,j) − ti,j + ch,j = 0 (6)

for 1 ≤ i, j ≤ 5. The equations are linear (note thatui,j

andvi,j are constants), whereas the original equations are
quadratic. Since there are 25 intersections, 50 linear equa-
tions of these forms are obtained.

The perpendicularity constraints between planes remain
quadratic, which are expressed in the forms

av,iah,i + bv,ibh,i + 1 = 0 (7)

for 1 ≤ i ≤ 5. There are 5 equations of this form. As
mentioned in Section 3.2.1, the perpendicularity constraints
are important for the problem to be solvable. Since the per-
pendicularity constraints are quadratic of estimated param-
eters, it is diffucult to convert the problem to simultaneous

linear equations which are easy to solve. Thus, we require
a method to solve simultaneous quadratic equations.

Using orthogonal projection, the average of the depths to
the scene remains ambiguous. To avoid the ambiguity, the
equation (3) is added to the constraints.

4.3. Numerical solution

By the formulation described above, the number of vari-
ables is 55. The number of linear equations is 51. Using a
matrix, these formulas are represented as follows:

Mx = b (8)

whereM is a51 × 55 matrix whose elements of are coef-
ficients of equation (6), andx is a 55-dimensional vector
whose elements are variables ofah,j , bh,j , ti,j , andb is a
51-dimensional vector whose elements are 0, with the ex-
ception of one of them, which is 1 from equation (3).

This linear equation is under-constrained. By applying
SVD (singular value decomposition) to the matrix, we can
obtain a 5D linear space ofx in which equation (8) is ap-
proximately fulfilled. This can be done by the following
steps. By applying SVD toM, the equation becomes as
follows:

UΣVx = b. (9)

whereU is a51×51 matrix andV is a55×55 matrix. Now,
let the matrix formed by the upper 50 rows ofV beV1, the
the matrix formed by the lower 5 rows ofV beV2, andU1

be the upper right,50 × 50 submatrix ofU. Assuming that
the rank ofM is 50 or 51, then the approximated solution
space of the equation can be expressed as

x = Vt
1Σ

−1Ut
1b + Vt

2f (10)

wheref = (f0, f1, f2, f3, f4) is an arbitrary 5D vector. The
assumption ofM having a rank of 50 or higher will be em-
pirically confirmed in Section 5.

By substituting the elements ofx in the equation (7) us-
ing (10), five simultaneous quadratic equations with vari-
ablesf0, f1, f2, f3 and f4 are obtained. We solve these
equations numerically using Gröbner bases.

The group of a polynomial equation can be treated as an
ideal in the field of commutative algebra. The ideal which
represents simultaneous polynomial equations can be gen-
erated by finite bases in the same way that vector space is
spanned by basis vectors. Bases with a special property
which generate an ideal are called Gröbner bases.

The method to obtain the numerical solution of simul-
taneous polynomial equations using Gröbner bases is de-
scribed in [3, 4] and [17]. More specifically, Gröbner bases
are obtained from the original equations; then, a matrix
called the ”action matrix” corresponding to the target vari-
able is calculated. The eigenvalues of this action matrix
constitute the solutions.



From the solver of simultaneous quadratic equations
based on Gr̈obner bases, multiple complex solutions of
(f0, f1, f2, f3, f4) are obtained. From these solutions,
we select solutions which are near to the real solutions.
Typically, we obtain several (nearly) real solutions of
(f0, f1, f2, f3, f4). Solutions ofx are obtained from the so-
lutions of(f0, f1, f2, f3, f4).

4.4. Refinement of the solution

The numerical solution estimated in the previous section
is a solution of the approximated problem. Therefore, the
solution of the original problem is estimated by improving
the obtained solution by nonlinear optimization. We can use
the errors of equation (6),(7) and (3) to form the objective
function to be optimized. However, the forms of equation
(6) are ”soft” constraints (i.e., they may not be strictly ful-
filled) since they use observed values, whereas the forms
of equation (7) are ”hard” constraints (i.e., they should be
strictly fulfilled). Moreover, it is desirable that the objective
function represents the observation errors in screen space as
bundle adjustments. Therefore, we take another approach.

The poses of the projector which projects two planes are
used as parameters of the objective function. The degree
of freedom of such a pose is 5. The actual parameters of
a pose are the rotation parameters of roll, pitch, and yaw,
and distances from the origin to each of the two planes. By
expressing the direction of the two planes by the rotation,
the forms of equation (7) are strictly fulfilled.

The line of intersection of the vertical plane of thei-th
image and the horizontal plane of thej-th image is calcu-
lated, and is projected in the image. Representing the pro-
jected line asli,j , the intersection(i, j) should be onli,j .
Therefore, the objective function is calculated as the sum
of the squared distances between intersections(i, j) and the
lines li,j for all i, j. In this formulation, the depths are not
parameters. The depths are estimated from the poses as the
depth of the point onli,j nearest to intersection(i, j). Fur-
thermore, to fix the scale, the squared error of equality 1 is
added to the objective function. Minimization of the objec-
tive function is performed using the Levenberg-Marquardt
method.

5. Experiments

In order to confirm the validity of the self-calibration
technique described in Section 4, some experiments were
conducted with simulated and actual data.

We used two types data for simulation. One generated
precise, numerically synthesized data, fulfilling the equa-
tions (4) and (5) with a precision on the order of10−16. The
other data was generated by a CG renderer. Using this ren-
derer, we could obtain data of an arbitrary 3D model. Actual
data was obtained by the specially configured device.

5.1. Numerically synthesized data

The numerically synthesized test data is generated as fol-
lows. Five poses of the projector are generated. They are
similar but varied randomly. From the poses, 25 intersection
points are calculated, whose depths are varied randomly.
The area of the bounding box of the points was from -0.098
to 0.048 forx, from -0.102 to 0.066 fory, and from -1.029
to 0.97 forz. Then, the points are projected onto the screen
coordinates, using both orthogonal projection and perspec-
tive projection. The projected coordinates are denoted as
(u∗

i,j ,v∗
i,j)(orthogonal) and(ui,j ,vi,j)(perspective).

To formulate a problem with simultaneus equations, the
Jacobian of the equations should be full rank; otherwise, the
equations may have infinite number of solutions instead of
finite number of solutions. To verify that the problem has
finite solutions, we calculated the singular values of the Ja-
cobian. From equations (3)(4) and (5), the Jacobian was cal-
culated symborically, and the variables of the Jacobian were
substituted by the synthesized data. The maximum singu-
lar value of the Jacobian was 2.8 and the minimum singular
value was 0.0002892. This calculation was performed with
Mathematica. Thus, it was full rank. This means that, in
general, the self-calibration problem of this configuration
has finite solutions.

As described in Section 4.3, we assumed that the rank
of matrix M is either 50 or 51. For the simulated data, the
maximum singular value in the double-precision floating-
point format was 2.6521308491146147. The 50th singu-
lar value was 0.0019077525332519675 and the 51st was
0.00018489169719173784. To perform SVD, the LAPACK
numerical library [14] was used. Considering the precision,
we can say that the rank ofM is either 50 or 51.

Next, we tested the numerical solver described in Section
4.3 with the synthesized data. We applied the solver to the
data and obtained the parameters of all the laser planes and
the depths of the intersection points. Since the scaling factor
cannot be determined, we scaled the solution by the true
value oft0,0 so that the solution could be compared.

The solution from the data of the orthogonal projection
should be the same as the true values. In fact, for the so-
lution calculated from(u∗

i,j ,v∗
i,j), the RMS (root of mean

squared) error ofti,j (1 ≤ i, j ≤ 5) was 4.70 × 10−6.
So, the solver worked correctly. The solution obtained from
(ui,j ,vi,j) was deviated from the true values becuase of the
approximation described in Section 4.2. The deviation is
shown in Figure 5.

Then, we tested the refinement of the solution described
in Section 4.4. We applied the refinement algorithm to the
solution obtained from the data of perspective projection.
Figures 6 (a) and (b) show the result. Compareing the result
with figure 5, it is confirmed that the solution was improved,
although there remain errors.



Figure 5. The solution of the approximated
problem with the true values. (The lines
drawn from five of the grid points show the
directions from the point to the projector.)

We also tested the refinement process with noised data.
To the synthesized data, we added uniform noise distributed
between -0.001 and 0.001 to the the constantsui,j andvi,j .
Generating ten sets of data with this method, the refinement
was performed for each of the data. The results are shown
in figures 6 (c) and (d).

5.2. CG-synthesized data

Next, we tested the method with the data genetated by
CG rendering. Figure 7 shows the example of a scene com-
posed of a cube and a plane. In the figure, (a) describes
all the pattens which is detected by the camera. The angle
of sight of the height of the image was 10 degrees. The
boarders of the black and white patten on the scene indi-
cates where the laser curves should be observed. Five of
the intersections marked with crosses are the intersections
where the laser planes intersect at right angles. Figure 7 (b)
shows the 3D wireframe of the true shape of the grid in the
scene. Figure 7 (c) is the result of the solution using ap-
proximation, and (d) is the result of the refinement. These
results are shown with the true shape of the grid. With this
example, the refinement worked very well, so that the re-
fined solution and the true values became very close.

5.3. Actual system

We built an actual active vision system based on the
method described in section 3. The laser projector consists
of two line lasers fixed at 90 degrees; one of them is red
and the other is green. The video sequence is captured by
DV camera and intersection points are obtained by detect-
ing laser-curves on each frame.

For experiments, we scanned a plastic object with a sinu-
soidal curve, as shown in Figure 8(a). Figure 8 (b) shows the
sample input images. The estimated 3D points and shapes
are shown in Figures 8(c) - (g). With those results, we can
confirm that the shape is successfully recovered with our
proposed method.

(a) (b)

(c) (d)

Figure 6. The refined solution: (a),(b) the so-
lution (shown with the true values), (c),(d) the
solutions with noised data. (The lines drawn
from five of the grid points show the direc-
tions from the point to the projector.)

6. Conclusion

In this paper, we proposed a self-calibration method of
multiple laser planes, which are parts of a laser sectioning
method. The algorithm is as follows: first, we capture an
image sequence while moving a laser projector back and
forth; second, we obtain the intersections of the projected
laser curves from the image sequence; and, finally, we solve
the simultaneous equations which are formulated from the
intersections.

We presented, as the simplest solvable configuration, an
implementation with a configuration of two line lasers at
fixed angles (90 degrees). With this device, an enough num-
ber of constraint equations to solve the problem are derived
from 5 images. The equations are difficult to solve, since
the size of the problem is large and it is difficult to convert
them into linear equations. We proposed a method to solve
the the equations, in which approximated solutions are ob-
tained by using Gr̈obner bases and are refined by nonlinear
optimization. Using the proposed method, we can create a
3D measurement system which consists of only a laser pro-
jector with two line lasers and a single camera.

In order to verify the reliability and effectiveness of the
proposed method, we conducted a simulation for evalua-
tion. We also implemented an actual 3D scanner and per-
formed several experiments with the system. The results of
our experiments confirmed the effectiveness of the proposed
system.



(a) (b)

(c) (d)

Figure 7. Results of the data generated by
CG : (a) the detected pattern, (b) the true 3D
shape of the grid, (c) the result of the approx-
imated problem (with the true shape), and (d)
the result of the refined solution (with the true
shape).
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