論文

EPI解析を利用したひずみのない複数ビデオカメラ画像の統合

三上 武志[†] タンダ ウー[†] 小野晋太郎^{††} 川崎 洋[†] 大沢 裕[†] 池内 克史^{†††}

Distortion-Free Fusion of Multiple Video Camera Images Using EPI Analysis

Takeshi MIKAMI[†], Thanda OO[†], Shintaro ONO^{††}, Hiroshi KAWASAKI[†], Yutaka OHSAWA[†], and Katsushi IKEUCHI^{†††}

あらまし エピポーラ平面画像(Epipolar Plane Image, EPI)を用いて複数ビデオカメラの校正を行い,そ れらの画像をひずみなく統合する手法を提案する.一般にカメラの光学中心はカメラ内部に存在し,複数のカメ ラにおいてそれらを一点に集約することは物理的に困難である.このようなカメラ画像を統合する際は,対象の 三次元形状情報などを利用しない限りひずみが生じる.本論文では,複数ビデオカメラを移動体に設置した条件 のもとで,それらの光学中心を時空間内で一致させることでひずみなく画像統合を行う.光学中心の一致点は EPIマッチングにより自動的に算出する.この処理では各カメラ映像の時間的重複性を利用するため,撮影範囲 の空間的重なりが少ない場合でも安定して対応関係が得られ,比較的自由にカメラを設置することが可能である. また,外部同期装置や測位装置などを用いずとも十分な品質を確保できるため,都市空間をはじめとした大規模 な実空間のテクスチャ取得にも適している.

キーワード エピポーラ平面画像(EPI),時空間解析,画像統合,全方位画像

1. まえがき

都市空間に代表される大規模な対象のモデル化や そのための効率的なデータ取得方法の開発は,高度 交通システム(ITS)やコンピュータグラフィックス (CG),コンピュータビジョン(CV)などの分野にお いて重要な研究テーマとなってきている.

これまで大規模空間の効率的なデータ取得の対象と しては,形状に関するものが主であった.例えば,航 空写真から地図を自動生成する手法や衛星写真による 数値標高モデル(DEM)生成など,多くの手法が研 究され,実用システムも多数開発されてきている.

一方で近年では , 広域空間から取得したデータを

††† 東京大学情報学環 , 東京都

Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan バーチャルリアリティ(VR)など,実際のシステム で利用しようとする試みも盛んになっており,景観シ ミュレーションや広域空間のディジタルアーカイプな ど多くのアプリケーションが提案されている.これら のシステムを構築する際に重要となるのは,豊かな現 実感の再現性である.計算機上で高い現実感を実現す るためには形状情報のみに基づいたレンダリングでは 不十分であり,テクスチャ画像の利用が不可欠である. このような理由から,広域空間のテクスチャ画像の取 得に関する研究が盛んに行われるようになってきた.

広域空間の画像を効率良く計測する手法として,す べての方向を撮影可能なカメラを用いる手法が提案さ れている.代表的なものとして1台のカメラと曲面鏡 を組み合わせたものがあるが,このようなシステムで は全方位のシーンを一画像として撮影するため,得ら れる画像の解像度が低くなる.高解像度の全方位画像 を取得する方法としては,放射状に配置した複数カメ ラの画像を統合する手法[1],[2] や,超多眼カメラを用 いた手法[3]が提案されている.しかし,これらの撮 影系では個々のカメラの光学中心を一致させることが 物理的に困難なことが多く,統合した画像にひずみが 生じるほか,カメラ間の同期にも特別な機構が必要と

電子情報通信学会論文誌 D Vol. J89-D No.6 pp. 1-12 2006 年 6 月

1

[†]埼玉大学工学部 , さいたま市

Faculty of Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, 338-8570 Japan ^{††} 東京大学情報理工学系研究科,東京都

Graduate School of Information Science and Technology, The University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan

なる.

本論文では,複数のビデオカメラを移動体に設置し た条件のもとでそれらの光学中心を時空間内で一致さ せ,ひずみのない画像統合を行う.カメラのキャリブ レーションには,エピポーラ平面画像(EPI)解析を 利用する.カメラを設置する移動体はおおむね等速運 動が可能であれば特に限定しないが,本論文では自動 車の上部に搭載した場合を主に想定し,都市などの広 域空間のテクスチャ画像を効率良く獲得することを目 指す.

本論文の構成は以下のとおりである.2.では本手法 の特徴を関連研究と併せて述べ,3.では本手法のアル ゴリズムの詳細を説明する.4.ではひずみに関する誤 差評価とカメラの配置に関する考察を行う.5.で実際 に屋外空間において実験を行った結果を示し,6.で本 論文をまとめる.

2. 提案手法の特徴と関連研究

2.1 全方位撮影系

代表的な全方位撮影系として,1台のカメラと曲面 鏡を組み合わせたものがある.これはカメラの前に置 いた曲面鏡により周囲の光線をレンズに集約すること で全方位を撮影できるようにしたものであり,曲面と して放物面[4] や双曲面[5]~[7],円錐面[8] などを用 いるものが提案されている.このシステムでは1度の 撮影で水平方向360°すべての方向の画像を撮影でき るため,複数のカメラを用いた場合とは異なり,時間 的・空間的な整合性を保ちながら連続画像データを取 得できる.反面,特殊な形状である曲面上に映った画 像を透視投影画像などの一般的な形式に変換する追 加処理が必要となるほか,方向により解像度が著しく 異なり,画像全体の解像度も比較的低くなる問題点が ある.

複数台のカメラを用いたシステムして,天頂・底 部を含む全周囲のカラー画像と距離画像をリアルタ イムで取得できる全方向ステレオシステム(Stereo Omnidirectional System, SOS)[9],[10] が開発され ている.このシステムは60 個の CCD を3 個 1 組と した20 個のステレオカメラユニットとして正二十面 体上に配置することで全方位にわたって一様な精度で 計測することを可能としている.また,これを更に小 型軽量化し移動体に搭載する miniSOS[11] も開発さ れている.しかし,これらのシステムは多数の CCD を使用するため高価であり,カメラの設置方法も特殊 である.

本研究では,一般的な民生用ビデオカメラ複数台か ら構成される撮影系により,大規模空間のテクスチャ を簡易に取得する手法を提案する.

2.2 EPI とカメラキャリブレーション

複数のカメラ画像を統合するには,各カメラの外部 パラメータが必要である.動画像から外部パラメータ を推定したり,形状復元を行う研究はこれまでにも多 数行われてきた.EPI解析[12]は,カメラの動きが 等速直線運動の場合に安定して撮影対象の三次元形状 を推定可能な手法である.これは,カメラの時系列画 像から生成される EPIと呼ばれる画像では,そのカ メラが等速直線運動を行っている場合に(a)特徴点の 軌跡が直線エッジとなって現れ,(b)その傾きが特徴 点の奥行きを表す,という性質を利用している.

従来, EPI 解析は主に対象の三次元情報を得るため に利用されてきたが,我々は,同時に移動する複数の カメラから得られる EPI において,上記(a)の性質 に着目した.すなわち,同じ特徴点を同じ運動条件の もとで撮影したカメラでは,EPI上において同一の軌 跡が現れ,したがって EPI 同士でマッチングをとる ことができる.そのマッチング位置からは,カメラ間 の外部パラメータ及びフレームずれに関する関係式を 得ることができる.

また, EPI は空間と時間を二軸にとる時空間画像で あるため, EPI 同士のマッチングは, 空間軸方向の重 なりが少ない場合でも時間軸方向の重なりが十分にあ れば安定して働く.したがって,本手法では各カメラ の撮影範囲に大きな空間的オーバラップは必要なく, 統合後の画像に隙間が生じない程度で十分である.こ のため,撮影領域に対する必要なカメラの台数が少な くて済み,効率良く広い領域を撮影することが可能で ある.

ひずみのない画像統合と複数ビデオカ メラのキャリブレーションの原理

3.1 時空間における光学中心の一致

画像統合とは,複数枚の画像を接合して1枚の画像 にまとめることを意味する.一般に,カメラによって 撮影された透視投影画像同士を統合する場合は,カメ ラの光学中心が一致している必要がある.例えば図1 のようなカメラ配置により2本の円柱を撮影した場 合,カメラA,Bの画像はひずみなく統合されるが, A,Cの画像は一方の円柱に合わせて画像統合を行う

図 1 光学中心と画像統合におけるひずみ Fig. 1 Optical centers and distortions in mosaicing.

Fig. 2 Spatio-temporal agreement of optical centers.

と他方の円柱が2個所に出現し,ひずみとなる.この ような場合は,対象の三次元形状情報などを利用して 補正を行う必要がある.通常,カメラの光学中心はカ メラ内部に存在するため,複数のカメラにおいてそれ らを一致させることは物理的に困難である.

この問題に対し,本研究では,複数のビデオカメラ が移動体(車両)に設置された条件において,カメラ の時間的な位置変化を考慮することで光学中心の一致 を実現する.図2のようにカメラA,B,Cを配置し, カメラ A が時刻 t1 に図の破線地点にあるものとする. 簡単のため車両が等速直線運動をしているとすると、 その後,時刻 t2 にはカメラ B が,時刻 t3 にはカメ ラ C が同じ地点を通過する.各カメラは車両上では 異なる個所に設置され,光学中心は空間的には一致し ていない.しかし,時間方向の推移を同時に考慮する ことにより,異なった時刻において光学中心を一致さ せることができる.本論文ではこれを時空間における 光学中心の一致と呼ぶこととする.各カメラを放射状 に向かせて設置すれば,走行経路上の各地点において 各方向の撮影画像が得られ,これらの画像からはひず みのない統合画像を合成することが可能である.各カ メラは図 3(a), (b) のように進行方向に平行な直線上 に並べて配置する.

以下ではまず,

条件 C₁ 各光学中心は進行方向直線上に並んでいる 条件 C₂ 車両は直線運動をする

Proposed

Conventional

図 3 複数カメラの配置 Fig.3 Configuration of multiple cameras.

条件 C₃ 車両は等速運動をする

という条件のもとで本手法の概論を述べ,後に実環境 において運用する一般的な場合について述べる.カメ ラ及び対象物体の位置関係と画像統合におけるひずみ の大きさについては4.で評価を行う.

3.2 複数ビデオカメラの時空間キャリブレーション3.2.1 一般的定義

通常,カメラのキャリブレーションとは,カメラの 位置・姿勢,及び画像面への射影に関するパラメータ を求めることであるが,複数のカメラで動画像を撮影 し,それらの動画像から画像統合を行う場合において は以下のように整理できる.

- 空間的キャリブレーション
- 内部パラメータ(焦点距離,画像中心など)
- 外部パラメータ(回転行列,並進ベクトル)
- 時間的キャリブレーション
- 時間パラメータ(カメラ間の時間的対応関係)

空間的キャリブレーションは従来の定義と同様である.時間的キャリブレーションとは,各カメラ間における時間的な対応関係,すなわちカメラ1の時刻 τ における画像と,カメラnの時刻 σ における画像が対応するとき,その関係 $\sigma = \tau + \delta_n(\tau)$ を求めることを意味する^(注1).したがって,N台のビデオカメラのパラメータは,内部行列をA,世界座標をカメラ座標に変換する回転行列,並進ベクトルを $^{w}R,^{w}t$ として以下のようになる.

$$A_{1}, \quad {}^{w}R_{1}(\tau), \quad {}^{w}\boldsymbol{t}_{1}(\tau), \quad \delta_{1}(\tau) \equiv 0,$$

$$A_{2}, \quad {}^{w}R_{2}(\tau), \quad {}^{w}\boldsymbol{t}_{2}(\tau), \quad \delta_{2}(\tau),$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$A_{N}, \quad {}^{w}R_{N}(\tau), \quad {}^{w}\boldsymbol{t}_{N}(\tau), \quad \delta_{N}(\tau)$$

$$(1)$$

(注1): この時刻は必ずしもグローバル時刻ではなく,カメラごとのローカル時刻でもよい.この場合はカメラ間の「時差」も δ_n に含める.

図 4 基準座標系 Fig. 4 Basic coordinate.

本論文では,これらのパラメータを複数カメラの時空間パラメータと呼び,これらを求めることをカメラの時空間キャリブレーションと呼ぶこととする.

3.2.2 本研究における時空間パラメータ

本研究においては図4のように第1のカメラの光学 中心を原点とし,車両進行方向をy軸とする基準直行 座標系 Σ をとり,この座標系(厳密には後述の Σ') における統合画像を車両の走行経路に沿った各地点で 合成する.したがって,統合画像を合成するためには 式(1)すべてのパラメータが必要なわけではない.

まず,回転行列は Σ に対する行列 R_n を求めれば 必要十分である.この行列は時刻に依存しない.

次に並進ベクトルであるが,条件 C_1, C_2 のもとで は各カメラは配置間隔にかかわらず適当な時間後に第 1のカメラと同じ位置を通過し,その時点での各撮影 画像が統合画像を構成する.ゆえに,並進ベクトルは 時間パラメータ $\delta_n(\tau)$ 内に集約されることになる.更 に,条件 C_3 のもとでは $\delta_n(\tau)$ は定数 δ_n となる.

3.2.3 処理の流れ

以下では時空間パラメータ $A_n, R_n, \delta_n(\tau)$ (n = 1, 2, ..., N) の推定処理の概略を述べる.内部パラ メータ A_n は,各カメラごとに植芝らのカメラキャリ ブレーション手法[13] を適用して推定する.回転パラ メータ R_n は,周囲の建造物形状から消失点を求める ことで推定する.詳細は3.3 に示す.これらの処理は, 各カメラごとに画像列から適当な画像を選択し,1度 だけ行えば十分である.

次に,回転パラメータを利用してすべての画像列に 平面投影処理を施し,その画像列からカメラごとに EPI を作成する.時間パラメータ $\delta_n(\tau)$ はこれらの EPI のマッチングにより求まる.詳細は 3.4 に示す.

3.3 空間パラメータ(回転行列)の推定

カメラ姿勢の推定にはキャリブレーションパターン を利用するのが一般的である.小スケールの移動体の 場合はボード上に印刷したものを用いればよいが,カ

電子情報通信学会論文誌 2006/6 Vol. J89-D No.6

図 5 平行直線群による消失点の導出 Fig.5 Detection of vanishing points using parallel lines.

メラを自動車上に設置する場合は巨大なボードが必要 になる.そこで本研究では H. Maitre らによる消失点 を用いた導出手法[14]を踏襲し,屋外の建造物などの オブジェクトを利用する.これらのオブジェクトの輪 郭は水平または垂直な平行直線群で構成されているこ とが多く,比較的容易に検出可能である.特に,都市 空間においてはこのようなオブジェクトが多数存在す る傾向が強く,回転行列を高い精度で検出可能である. 以下ではこのキャリブレーション方法を具体的に説明 する.なお,カメラは基準座標系上で固定されている ため,この処理は全体を通してカメラごとに1度だけ 行えば十分である.

1)各画像列から建物の輪郭や窓枠などの水平・垂直 な平行直線群が多く映っているシーンを選ぶ.以下で は、これらの直線群が構成する座標系 Σ' に対するカ メラの姿勢が求まる.水平エッジと車の進行方向が平 行である必要性は場合による.平行であれば $\Sigma \geq \Sigma'$ が姿勢に関して一致し、完成後の統合画像と Σ の関 係^(注2)が明らかになる.その必要がなければ平行でな くてもよい.統合自体はいずれの場合でも可能である.

2) Canny オペレータによりエッジを検出し, ハフ 変換により直線を抽出する.ノイズなどの影響によ り画像上での一線分に対するハフ空間上の投票は必 ずしも一つのセルに集中しないため,ハフ空間上で k-means 法によるクラスタリングを行い,その代表点 に対応する直線を抽出結果とする.抽出された直線成 分は垂直方向のものと水平方向のものに分類する.図 5 に直線抽出の例を示す.

3) 消失点を求める.抽出された水平・垂直方向の 直線群はそれぞれ一点で交わり,その交点が消失点と 呼ばれる.実際の画像ではノイズなどの影響により交 点は唯一に定まらないため,すべての直線の組に対し て交点の座標を求め,それらのうちすべての直線との

(注2): 画像中で車両正面方向に対応する座標など.

重み付き距離の総和が最小となる点を消失点とする. 重み関数は式(2)の Welsch ロバスト推定関数で定義 し,遠く離れた直線による影響を軽減している.ここ で *d* は交点と直線との距離,*c* は定数である.

$$p(d) = \frac{c^2}{2} \left[1 - \exp\left\{ -\left(\frac{d}{c}\right)^2 \right\} \right]$$
(2)

4) 消失点から回転行列は以下のように計算される. まず, ベクトル r1と r2 を次のように定義する.

$$\boldsymbol{r}_1 = \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix}, \quad \boldsymbol{r}_2 = \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix}$$
 (3)

 $(u_1, v_1), (u_2, v_2)$ は正規化画像座標における水平,垂 直方向の消失点の位置である.したがって第3成分 に焦点距離1を付加した r_1, r_2 は,カメラ座標系に おいて「光学中心から射影面上の消失点に向かうベク トル」を表す.これらのベクトルは Σ' の座標軸と平 行になっている.したがって,水平,垂直方向の軸を $\Sigma'(0, 1, 0), \Sigma'(0, 0, 1)$ ととれば,回転行列Rに関して

$$R\begin{pmatrix}0\\1\\0\end{pmatrix} = \hat{r}_1, \quad R\begin{pmatrix}0\\0\\1\end{pmatrix} = \hat{r}_2 \tag{4}$$

が成り立つ.ここで[^]は正規化を表す.したがって,回 転行列 R は以下のようになる.

$$R = \begin{pmatrix} \hat{\mathbf{r}}_1 \times \hat{\mathbf{r}}_2, & \hat{\mathbf{r}}_1, & \hat{\mathbf{r}}_2 \end{pmatrix}$$
(5)

3.4 時間パラメータの推定

3.4.1 平面投影と EPI の生成

時間パラメータの推定には EPI を利用する. EPI とは,図6のように画像列をフレームごとに並べ,エ ピポーラ線に沿ってこれを切断した断面に現れる時空 間画像である.

提案手法では,各カメラ画像列を直接に切断するの ではなく,まず光学中心を同じ点に置き,前節で求め た R を利用して仮想の共通面上に投影した画像を求 め,その画像から EPI を生成する.このような操作 により,図7のように「ある二つのカメラが同じ位 置にあるときに共有している光線」が EPI 上で同じ パターンを描くようになる.ゆえに,逆にそのような EPI 上のパターンに関してマッチングをとることは, 両カメラ間の時間パラメータを求めることと等価にな

図 6 EPI と座標系の定義 Fig. 6 Definition of EPI and coordinates system.

Fig. 7 Projection to common plane.

(a) Original image

(b) Example of rectified image

図 8 平面投影の例 Fig.8 Examples of rectification.

る.なお,EPI上に描かれるパターンは,オブジェクトのデプス値によって異なる傾きを描く性質をもっている.そのため,異なるデプス値をもつオブジェクトが多く撮影されているほど,マッチング処理は安定する傾向にあると考えられる.

我々の実験では投影する共通面は Σ 上の平面 $x = \alpha$ とし,進行方向に対して右側を向いたカメラでは $\alpha > 0$,左側を向いたカメラでは $\alpha < 0$ とした.図8 にその投影例を示す.

図 10 EPI マッチングの例 Fig.10 An example of EPI-matching result.

3.4.2 EPI 同士のマッチング

EPI 同士のマッチングを行い,時間パラメータを求 める.なお,本手法では,マッチングのエネルギー関 数に線形相関係数(付録参照)を利用しているため, カメラの個体差による色のばらつきはマッチングにほ とんど影響しない.そのため,マッチングの際の色空 間にはグレースケール空間を用いている.

図 9 のように, 片方の EPI をずらしながら重なり 部分の相関係数が最大となる点を二次元探索する.カ メラ 1 の EPI とカメラ n の EPI が時刻 τ, σ でマッ チするとき,時間パラメータは $\delta_n(\tau) = \sigma - \tau$ として 求められる.カメラ 1 と重なりのない EPI の場合は 他のマッチング結果を通して計算する.

EPI の二次元マッチングは u 軸方向の重なりが非 常に少ない場合でも τ 軸方向の重なりが存在すること により安定して動作する.すなわちカメラの画角(撮 影範囲)に大きな空間的オーバラップをもたせておく 必要がなく,カメラの設置は比較的自由に,厳密な調 整を考えることなく行うことができる.また,撮影領 域に対して必要なカメラの台数が少なくて済み,効率 良く広い領域を撮影することが可能である.更に,カ ラーバランスのずれに対してもロバストであるという 利点もある.図10 に3台のカメラで撮影した画像を 平面投影し得られた EPI において実際に二次元マッ チングを行った結果を示す.複数の EPI が滑らかに結 合していることが分かる.

3.5 画像統合

時空間パラメータが求まると各画像を統合すること ができる.各カメラの光学中心が Σ の原点に,画像 平面上に時刻 $\tau + \delta_n(\tau)$ の画像が映っているものとし て,それらを適当な共通面上に投影する.本実験では この共通面は Σ の原点を中心とした円筒,または x軸に垂直な平面としている.

4. ひずみ誤差の評価と自由運動への展開

本章では時空間キャリプレーションの有効性を示す ため,ひずみ誤差の評価を行う.また,それらの結果 を用いて3.において仮定した C1 ~ C3 の条件につい て考察し,移動体が自由運動を行った場合の適用性に ついて論じる.

4.1 ひずみ量の解析

ひずみ量の解析は以下の二つについて行う.

(1)従来のモザイキング(デプスを仮定した射影 変換)による画像統合を行った場合のひずみ量

(2) 本手法による画像統合を行ったときに,光学 中心が厳密には一致しないことにより生じるひずみ量

図 11 のように第一のカメラが原点に,他のカメラ が $(\Delta x, \Delta y)$ にあるとすると,それぞれの正規化画像 座標上での位置ずれは図中の diffに相当し,以下のよ うに表される.なお, diff₁は従来の手法による位置 ずれに diff₂ は本手法における位置ずれに相当する.

$$\operatorname{diff}_{1} = f(\Delta x, \Delta y) \left(\frac{d}{D} - 1\right) \tag{6}$$

$$diff_2 = f(\Delta x, \Delta y) \tag{7}$$

$$f(\Delta x, \Delta y) = \frac{\Delta y - \Delta x \tan \theta}{d - \Delta x} \tag{8}$$

ここで d, θ は注目点の位置を表すパラメータ, D は 射影変換において仮定するデプスである.両者は式の 上では係数だけの違いであるが,一般に d はシーン中 で様々に変化する値をとり, diff1 よりも diff2 の方が

6

図 12 ひずみ量の評価結果 (1) Fig.12 Evaluation result of distortion amount (1).

 $\Delta x, \Delta y$ の典型値は小さいことに注意されたい.

まず,カメラを従来手法である図3(c)の配置とし, ひずみ量を式(6)により評価する.このような射影変 換においてひずみ誤差を発生させるのは,仮定する デプス値 D と実際のデプス値 d の相違である.図 12は,D 及び d に対するひずみ量を計算したもので ある.カメラの配置間隔 ($\Delta x, \Delta y$)は,一般的な民生 用ビデオカメラの大きさを考慮して(a)で(0,0.3m), (b)で(0.3m,0)とし,また $\theta = -30^{\circ}$ としている.

次に,我々の提案手法におけるひずみ量を式 (7) に より評価する.本手法においてひずみ誤差を発生させ るのは,仮定 $C_1 \sim C_3$ が完全には成立しないことに よる Δx , Δy の存在である. $\Delta x = \Delta y = 0$ の場合は ひずみ誤差は生じない.図13 は Δx , Δy に対するひ ずみ量を計算したものである.なお,図12,図13 に おけるひずみ量は,35mmのレンズを使用して水平解 像度 640 ピクセルで撮影した写真のピクセル値に換算 すると,diff = 0.01 のときで約6 ピクセル,diff = 0.05 のときで約30 ピクセルである.

これらの評価量は以下のことを示している.

図 13 ひずみ量の評価結果 (2) Fig.13 Evaluation result of distortion amount (2).

射影変換による画像統合は,対象とするシーンがほぼ一定のデプスのみによって構成され,かつ,デプスの仮定値を適切に与えた場合に有効に機能する.

 本手法による画像統合は,対象とするシーンの 形状(デプスの分布状況)に関係なく適用でき,また, 光学中心のずれが小さければいくらでも誤差を小さく することができる.

4.2 仮定条件の考察と自由運動への拡張

本節では,提案手法において仮定条件 C₁ ~ C₃ を 緩和した場合のひずみ量について考察し,移動体が自 由な運動をした場合の展開について論じる.ここでは 移動体は自動車とする.

4.2.1 直線配置条件 (*C*₁)

直線でない配置による水平方向のずれは図 11(b) の Δx で表される.垂直方向のずれは図示していないが, 計算上は Δy と同じである.カメラの大きさと内部の 光学中心の位置を考えると, Δx , Δy はたかだか 10cm 程度と見積もられる.図 13 によれば,この影響によ る統合画像のひずみは近くの物体でも diff₂ = 0.02 程 度である.

7

図 14 直線でない運動による水平方向のずれ Fig.14 Horizontal difference caused by non-straight motion.

4.2.2 直線運動条件 (C₂)

直線でない運動による水平方向のずれは図 11(b)の Δx で表される.車が半径 rの円運動をしたとすると, この大きさは図 14 により以下の式で表される.

$$\Delta x = \sqrt{r^2 + l^2 - w^2} - \sqrt{r^2 - w^2} \tag{9}$$

ここで 2l はカメラを並べる長さ, 2w は車のホイール ベースである. 2l = 2w = 3m とすると, Δx は一般 国道において急カーブとされる r = 100m のときで 0.01 程度である. したがって,通常の道路を運転して いる状況では,この影響による統合画像のひずみはほ とんど無視できるとしても問題ないと考えられる.

4.2.3 等速運動条件 (C₃)

等速でない運動に関しては,速度の変化を矩形近似, すなわち短区間ごとに等速運動を行っているとみなし て対応することを考える.このとき実際の運動との間 に生じるずれは図11(b)の Δyに相当し,以下の式に より見積もることができる.

$$\Delta y = \frac{1}{2}a \left(\frac{L}{v_0}\right)^2 \tag{10}$$

ここで a, v_0 は車の加速度及び初速度, L は画像統合に 使用するカメラの端から端までの距離である.L = 3mとすると, ずれ量は $a = 5 \text{km/h/s}, v_0 = 30 \text{km/h}$ の ときで $\Delta y = 0.09 \text{m}$ となり, 図13 によれば, このず れは近くの物体でも diff₂ = 0.02 程度に抑えられる. 一般に人が車を運転し,メータ読みにより等速を保つ 場合でも生じる速度の変動は最大でも5 km/h/s程度 と考えられる.したがって本条件もその程度の等速条 件に緩和しても品質を保つことができる.

5. 実 験

本手法の有効性を確認するために,従来のカメラ配 置と提案手法のカメラ配置において実際に画像を撮影

	表 1 カメラの仕様
Table 1	Specification of the camera

Model No.	SONY VX-2000			
Shutter speed	$1/250 { m sec}$			
F value	F6.8			
Frame rate	29.97 frame/sec			
Image size	720×480 pixel			

(b) Proposed (9 cameras, right side)

(c) Proposed (9 cameras, multi-directional)

し,統合実験を行った.また,本手法を用いることで, 前方180°をカバーするようなパノラマ画像を生成した.更に,本手法を利用して生成したパノラマ画像を 利用して,仮想自由視点画像の生成実験を行った.

5.1 実験(I):複数カメラ画像の統合

本実験に使用したカメラの仕様を表1に記す.

まず,図15,表2,表3各(b)の撮影条件のもとで 道路を走行しながら撮影を行った.この画像列を提案 手法によって統合した例を図16に示す.前方の電柱 や後方の建物にも,対象のデプスによらず大きなひず みは発生していない.これは本手法によって光学中心 を一致させた効果である.

これに対し,図17は,図15,表2,表3各(a)の 撮影条件のもとで撮影を行い,従来の射影変換によっ て画像統合を行った例である.この図では電柱が他の 建物に対して近い位置にあるため,顕著なひずみが発 生している.

このように,デプス値が大きく異なる物体(図16, 図17における電柱と建物)が撮影されている画像を

表 2 カメラのおおよその配置条件

Table 2 Arrangement condition of cameras.

(a) Conventional (6 cameras, right side)

(b) Proposed (9 cameras, right side)(c) Proposed (9 cameras, multi-directional)

	Camera	Position		Direction	
	No.	$x(\mathrm{cm})$	$y(\mathrm{cm})$	Pan	Tilt
	1	30	-90	0°	middle
	2	30	-60	30°	middle
(\mathbf{a})	3	30	-120	-30°	middle
	4	0	-90	0°	high
	5	0	-60	30°	high
	6	0	-120	-30°	high
	1	0	0	30°	low
	2	0	-30	30°	middle
	3	0	-60	30°	high
	4	0	-90	0°	low
(b)	5	0	-120	0°	middle
	6	0	-213	0°	high
	7	0	-243	-30°	low
	8	0	-273	-30°	middle
	9	0	-309	-30°	high
	1	0	0	90°	middle
	2	0	-30	120°	middle
	3	0	-60	120°	high
	4	0	-90	150°	middle
(\mathbf{c})	5	0	-120	150°	high
	6	0	-213	60°	middle
	7	0	-243	60°	high
	8	0	-273	30°	middle
	9	0	-309	30°	high

表 3 撮影場所と走行速度

Table 3 Capturing area and traveling speed.

- (a) Conventional (6 cameras, right side)(b) Proposed (9 cameras, right side)
- (c) Proposed (9 cameras, multi-directional)

	1	× .	,			
		Are	ea	А	pprox. sp	eed
(a)	Urban	area,	Local stree	t	25 km/h	
(b)	Urban	area,	Local stree	t	15 km/h	
(c)	Urban	area,	Expressway	y	60 km/h	

対象として従来手法と本手法を適用したとき,光学中 心を一致させている本手法では,いずれもひずみが生 じていないが,それが行われていない従来手法では, 同様のパラメータを用いたとき,片方にはひずみが生 じている.

次に,提案手法により前方およそ180°の範囲をカ パーするようにカメラを配置して撮影を行った.撮影 条件は図15,表2,表3各(c)のとおりである.この 画像列を仮想円筒上に投影してパノラマ画像列を生成 した例が図18である.このように,本手法によれば 特殊な装置を用いることなく簡易に光学中心の一致し たパノラマ画像を生成でき,カメラの台数を増やせば 全方位画像を生成することも可能である.カメラの画

図 16 本手法により光学中心を時空間的に一致させたカ メラ画像の統合結果

Fig. 16 Synthesized result of camera images with their optical centers agreed by our method.

Original

図 17 従来の射影変換によるカメラ画像の統合結果 Fig. 17 Synthesized result of camera images by conventional projective transformation.

角を 60°程度とすると,全方位画像の生成に必要なカ メラの台数は,余裕を含めても7台ほどであり,カメ ラの大きさを考慮しても十分に通常のワゴン車などに は直線上に並べることが可能である.

更に,図19はカーブ区間におけるパノラマ画像の 生成結果である.ここでは速度変動が生じていること を勘案し,前後1.5秒分を含めた短区間で EPI マッチ

Table 4 Examples of estimated camera parameters.						
Camera	Spatial	parame	ter	Tempora	al param	eter
pair	[pixel]			$\delta_m - \delta_m$	δ_n [fram	e]
m, n	Estimated	Correct	Diff	Estimated	Correct	Diff
1, 2	5	5	0	-54	-54	0
2, 4	15	15	0	80	80	0
1, 3	4	5	1	42	43	1
3, 5	3	3	0	38	39	1
1, 6	2	2	0	51	51	0
6, 8	1	1	0	22	22	0
1, 7	0	1	1	-63	-63	0
7, 9	1	1	0	97	96	-1

図 18 本手法により円筒上に生成した統合パノラマ画像 Fig.18 Synthesized result of cylindrical panorama image by our method.

ングを行って時間パラメータを求めている.等速直線 運動でないカメラの動きによる光学中心のずれから生 じるひずみは微小であり,一般的に等速を意識する程 度の運転,及び通常のカープ撮影された映像において も本手法を適用することは可能であるといえる.

参考として, EPI マッチングにより得られたカメラ パラメータの数値例を表4に記載する.Spatial parameter はマッチングにおける図6のu軸方向の重な り量, Temporal parameter は対応する時刻(フレー ム)の差である.それぞれ Estimated (推定値)は本 手法を用いて自動的・数理的に得られた値, Corrcet (正解値)は手動によりマッチングを行った際に得られ た値であり, Diff (誤差)はそれらの差をとったもの である.これによれば,いずれも Diff がほぼ0になっ ており,高い精度で推定が行えていることが分かる.

5.2 実験 (II): 仮想自由視点画像の合成

図 16 で得られたパノラマ画像データに対し, Taka-

図 19 カーブ区間の統合パノラマ画像 Fig. 19 Synthesized result of cylinderical panorama image in a curved zone.

hashi ら及び Shum らの画像ベースレンダリング (IBR) 手法[2],[15] を用いて撮影経路外の仮想視点 から見た画像を合成した.結果を図 20 に示す.同図 (a)~(c) は仮想視点から見た場合のパノラマ画像であ り,いずれの画像においても,奥行位置にかかわらず ひずみなく画像を生成できている.また,仮想視点の 変化に伴って図中の木と背後の建物の位置関係・遮蔽 状況が適切に変化している.更に,同図(e),(f) は仮 想視点を(a) と同じ位置に置いた場合の使用するカメ ラの台数による合成結果の比較である.複数台のカメ ラを用いることで視野が広がり,IBR 手法を用いた場 合でも死角のない自然な画像統合ができていることが 分かる.

6. む す び

本論文では, EPI 解析による複数カメラのキャリブ レーション手法を提案し, それを利用して実際に画像 の統合を行った.

一般に,カメラの光学中心はカメラの内部にあるた め,複数カメラの光学中心を一点に集めることは物理 的に困難である.これに対して提案手法は,時空間, すなわち時間及び空間上でのカメラ位置を同時に考慮 することにより複数カメラの光学中心の一致を EPI マッチングで実現した.したがって,本手法を用いれ ば複数のビデオカメラを移動体(車両の屋根)に設置 し,走行しながら撮影するだけで効率良く大規模シー ンの画像を取得し,ひずみなく統合することができる. また,本手法では各カメラ映像の時間的重複性を利用 するため,撮影範囲の空間的重なりが少なくとも安定 して処理を行える.そのため,大規模な空間の取得を 効率的に行うことができるという利点もある.

本手法の有効性を確認するため,実際の都市空間を 対象として実験を行った.その結果,ひずみのないパ ノラマ画像を生成することに成功し,円筒上に進行方

(a) Viewpint changing effect (far)

(b) Viewpint changing effect (middle)

(c) Viewpint changing effect (near)

(d) Camera position

(e) When one camera used

(f) When three cameras used

図 20 自由視点画像の生成 Fig.20 Generation of free-viewpoint image.

向のパノラマ画像を生成することもできた.また,厳 密な等速直線運動を行っていないと考えられる区間に 対しても本手法を適用し,4.における誤差評価が視覚 的にも信頼できるものであることが確認できた.更に, 全方位画像の特性を利用して,IBRによる撮影地点以 外の仮想視点からの画像を生成することにも成功した.

また,本研究はカメラの台数を増やすことで全方位 画像の生成へと拡張されるので,今後の展望として, 全方位画像を生成する際には各カメラごとにパラメー タ推定誤差を分散させるなど,生成対象に応じたより いっそうの最適化を行うことや,屋外大規模空間モデ ルの構築,表示システムの開発などが考えられる.

献

文

- M. Hirose and E. Takaaki: "Building a virtual world from the real world,"International Symposium on Mixed Reality, pp. 183-197 (1999).
- [2] T. Takahashi, H. Kawasaki, K. Ikeuchi and M. Sakauchi: "Arbitrary view position and direction rendering for large-scale scenes,", Vol. 2Comput. Vis. Pattern Recognit., pp. 296-303 (2000).
- [3] 遠藤隆明,谷川智洋,広田光一,廣瀬通孝: "超多眼カメラによる全天周画像の再構成,",情処学論,43,SIG 11(CVIM5), pp. 43-52 (2002).
- [4] S. K. Nayar: "Omnidirectional video camera," Comput.

Vis. Pattern Recognit., pp. 482-488 (1997).

- [5] Y. Onoue, K. Yamasawa, H. Takemura and N. Yokoya: "Telepresence by realtime viewdependent image generation from omnidirectional video streams,", Vol. 71Comput. Vis. Image Understand., pp. 154-165 (1998).
- [6] Y. Yagi and S. Kawato: "Panorama scene analysis with conic projection,"Int. Conf. on Intelligent Robots and Systems, pp. 181-187 (1990).
- [7] K. Yamasawa, Y. Yagi and M. Yachida: "New realtime omnidirectional image sensor with hyperboloidal mirror,"8th Scandinavian Conf. on Image Analysis, pp. 1381-1387 (1993).
- [8] J. Zheng and S. Tsuji: "Panoramic representation of scenes for route understanding," Int. Conf. on Pattern Recognition, pp. 161-167 (1990).
- [9] 棚橋英樹,島田大輔,山本和彦,丹羽義典: "全方向ステレ オシステム(sos)を用いた移動体追跡,"View2000, pp. 67-72 (2000).
- [10] 山本和彦,棚橋英樹,桑島茂純,丹羽義典: "実環境センシングのための全方向ステレオシステム(sos),",電学論
 (C) 電子・情報・システム部門誌,121-C,pp. 876-881
 (2001).
- [11] 佐藤雄隆, 王彩華, 棚橋英樹, 丹羽義典, 山本和彦, 桑島茂 純: "移動体ビジョンを指向した小型全方向ステレオシス テム(minisos)の開発,"画像センシングシンポジウム, pp. 311-316 (2003).
- [12] R. Bolles, H. Baker and D. Marimont: "Epipolar

plane image analysis: An approach to determining structure from motion,", Vol. 1Int. J.of Computer Vision, pp. 7-55 (1987).

- [13] 植芝俊夫,富田文明: "平面パターンを用いた複数カメ ラシステムのキャリブレーション,",情処学論,44,SIG 17(CVIM 8), pp. 89-99 (2003).
- [14] H. Maitre, E. Lutton and J. Lopez-krahe: "Determining vanishing points using hough transform,", IEEE Trans. Pattern Anal. Machine Intell, 16, pp. 430-438 (1994).
- [15] H. Shum and L. W. He: "Rendering with concentric mosaics,", SIGGRAPH '99 Proc.ACM, pp. 299-306 (1999).

付 録

画像の相関係数の計算式

3.4.2 において利用しているエネルギー関数として は,線形相関係数を用いている.なお,任意の二つの 画像 X, Y の座標 (i, j) の画素値を x_{ij}, y_{ij} ,それらの 平均値を \bar{x}, \bar{y} で示したときの相関係数 r は

$$r = \frac{\sum_{i} \sum_{j} (x_{ij} - \bar{x}) (y_{ij} - \bar{y})}{\sqrt{\sum_{i} \sum_{j} (x_{ij} - \bar{x})^2} \sqrt{\sum_{i} \sum_{j} (y_{ij} - \bar{y})^2}}$$
(A·1)

であり, すべての画素値が同じ画像(すなわちすべて の *i*, *j* において *x*_{*ij*} = *y*_{*ij*})においては 1 となる. (平成 17 年 9 月 26 日受付, 12 月 28 日再受付)

三上 武志 (学生員)

2005 埼玉大・工・情報システム卒.現在, 同大大学院・理工学研究科情報システム工 学専攻博士前期課程在学中.コンピュータ ビジョンや映像解析に関する研究に従事.

タンダ ウー

1994 Yangon University, 理学部 卒. 1998 University of Computer Studies, Yangon, 修士了.2002 埼玉大学大学院・ 理工学研究科情報システム工学専攻博士後 期課程 入学.現在,埼玉大学大学院・理 工学研究科情報システム工学専攻博士後期

課程在学中.コンピュータビジョンや照明・反射解析に関する 研究に従事.

小野晋太郎

2001 東大・工・電子情報 卒.2003 同大 大学院・情報理工・電子情報学専攻修士了, 2006 同博士了(情報理工学).現在,同大 生産技術研究所博士研究員.主に時空間情 報解析,ITS に関する研究に従事.

川崎 洋 (正員)

1994 京大・工・電気電子卒.2003 東大・ エ・電子情報工学 博士課程了.博士(工 学).現在,埼玉大・工・情報システム工 学科助教授.主として広域空間のモデリン グ,三次元ビジョン,テクスチャ解析に関 する研究に従事.情報処理学会,IEEE 各

会員.

大沢 裕(正員)

1976 信州大・工・電子 卒.1978 信州 大大学院・工・電子 修士了.東大生研助手, 埼大・工・助手,助教授などを経て,1998 より,埼大・工・情報システム工学科教授. 工博.地理情報システム,時空間情報シス テムの研究に従事.信学会論文賞受賞.情

報処理学会,映像情報メディア学会,日本 GIS 学会,ACM, 各会員.

池内 克史 (正員)

1973 京大・工・機械 卒.1978 東大大学 院・工・情報工学 博士了.博士(工学). MIT 人工知能研究所,電総研,CMU 計 算機科学部を経て,1996より東京大学生 産技術研究所教授.現在,同大情報学環教 授.人間の視覚機能,明るさ解析,物体認

識,人間による組立作業の自動認識,文化財のディジタル保存,ITS などの研究に従事.論文賞(ICCV-90, CVPR-91, AIJ-92,ロボット学会誌-97,IEEE R&A 誌-98,日本バーチャ ルリアリティ学会論文誌-99)等受賞.人工知能学会,日本ロ ボット学会,日本バーチャルリアリティ学会,OSA,IEEE 各 会員(Fellow). **Abstract** We present Epipolar Plane Image (EPI) based calibration method of multiple video cameras, which enables distortion-free fusion of each image. Generally, since an optical center of a camera exists inside its body, it is physically impossible to coincide them at one point and distortions inevitably occurs when mosaicing them. In this paper, we propose to bring optical centers together in spatio-temporal field under condition that cameras are installed on top of a vehicle and capture images by running along the street. Our method is useful of capturing hi-resolution omnidirectional images without using special external synchronization devices nor positioning devices.

 ${\bf Key\ words} \quad {\rm epipolar\ plane\ image(EPI),\ spatiotemporal\ analysis,\ image\ mosaicing,\ omnidirectional\ image}$