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Abstract

Image-based rendering (IBR) is one of the most promis-
ing techniques for photorealistic image synthesis. However,
the naive IBR framework has some drawbacks, including
restrictions on viewing direction, and difficulties in man-
aging illumination change or object deformation. In this
paper, we present a new IBR method capable of composing
images of deformable objects from arbitrary view points,
and under arbitrary illumination. To do this, we measured
and utilized geometric object model and bidirectional tex-
ure funcion (BTF). BTF is genaralization of BRDF with
spatial variation along object’s surface, represented as a set
of texture databases which are captured from every view-
ing angle and light direction. To evaluate the efficiency
of this method, we performed several experiments on ob-
jects with non-rigid characteristics (e.g., cloth with varying
shininess, a 3D object with complicated surface attributes)
which are difficult to render correctly by general model-
based CG techniques. Compared to previous BRDF based
rendering approaches, our work more fully utilizes the 4-
dimensional lighting/viewing parameters of BTF, since it is
essential for image composition of deformed objects. Fur-
ther, our implementation sorts the data based on BRDF pa-
rameters, resulting in compact data representation.

1. Introduction

Image-based rendering (IBR) techniques have recently
become one of the major topics of the computer graphics
(CG) and vision research; this is due to IBR’s great potential
for photorealistic image synthesis with complicated shapes
and non-rigid effects (e.g., animal fur, velvet, specular, etc.)
whose rendering has been historically difficult. In recent
years, a multitude of papers have been published about IBR,
describing principles, various kinds of implementation and

theoretical analyses.

One of the key concepts used in IBR is the plenop-
tic function. Originally, a 7D plenoptic function was pro-
posed to define the intensity of light rays passing through
the camera center at every location, at every viewing an-
gle, for every wavelength and at any time[1]. “Plenoptic
Modeling”[9] uses a continuous 5D plenoptic function, ig-
noring time and wavelength. In reality, it is still difficult to
apply this theory for rendering real world images. Practical
simplification and implementation of this approach was pre-
sented as “Lumigraph”[7] and “Light Field Rendering”[8],
both of which use a 4D plenoptic function with clever pa-
rameterization. H.Shum et al.[13] presented 3D plenoptic
function which, as the name suggests, creates concentric
mosaics.

Although these approaches are very powerful in repro-
ducing real world scenes, they are not without some prob-
lems. Among them, (1) difficulty in acquiring, storing and
managing huge image data, (2) limitations of rendering con-
ditions (for example, restrictions on viewing direction, ro-
tation of objects, or illumination change), and (3) difficulty
in deformation of objects, are significant.

The first problem of huge data stems from the 7 dimen-
sional expression of rays in real world, which amounts to
too much information for efficient handling and storage.
Roughly speaking, research shown above ([7] [8] [13]) at-
tempt to reduce the huge quantity of data without degrading
the quality.

The latter two problems are difficult to avoid when us-
ing a naive plenoptic function based approach. Generally,
there is a trade-off relationship between the first problem
and the others because the approach is essentially “replay-
ing” recorded information of real rays. The more conditions
you have to deal with, the more data you need. Obviously,
it is impractical to record rays for every possible rendering
condition and for every deformation.

A possible solution for realizing arbitrary viewing direc-



tion, object’s rotation, or illumination is to use geometric in-
formation. View-dependent texture mapping[5, 6] is a kind
of IBR, but is more closely related to model-based render-
ing because it uses geometric information. The surface light
field, a term coined by Miller et al. [10], is a function that
assigns an RGB value to every ray emanating from every
point on a surface. Using this function and geometric data,
composing scenes from an arbitrary viewpoint is possible.
This method gives not only high data compression rate, but
also a solution to the problem of synthesizing the glossy re-
flection on a surface. Nishino et al.[11, 12] and Wood et
al.[16] extend surface light field rendering in an efficient
manner. The basic idea of their research is almost the same,
but their purpose and data compression algorithms are dif-
ferent. Nishino realizes the synthesis of the object with ar-
bitrary direction of lighting using principal component anal-
ysis (PCA) for data compression, while Wood achieves im-
age composition from arbitrary viewpoint and a high com-
pression rate using PCA and a vector quantization. Wood
et al. also proposed an editing system and “mimiced” il-
lumination change and object deformation by moving the
locations of specular peaks.

Essentially, the surface light field is a subset of the bidi-
rectional reflectance distribution function (BRDF), a 4 di-
mensional function which represents dependency of reflec-
tion on illumination direction [3]. Theoretically, if you have
all the information of BRDF for every surface points of
a 3D object, you can synthesize the object’s image from
arbitrary viewpoints under arbitrary illumination with arbi-
trary deformation. BRDF with 2D spatial variation is called
bidirectional texure function, or BTF [4]. BRDF informa-
tion along the object’s surface can be thought of as BTFs
mapped onto the surface.

Obtaining BTFs of a 3D object is a challenging problem.
Marschner et al.[15] constructed a BRDF map of a human
face by modulating the BRDF of skin which is measured in
advance. Dana et al.[4] acquired a BTF database of vari-
ous materials with 4D lighting/viewing parameters, but the
materials were flat shaped. For the purpose of image com-
position, Wood et al.[16] acquired a 2D subset of BRDF
with fixed lighting direction, using photographs taken from
every direction. Nishino et al.[11, 12] used a 3D subset
with arbitrary lighting direction and a viewpoint of 1 de-
gree of freedom (rotation with fixed axis). The photographs
were acquired using a turntable. Chen et al.[18] used ef-
ficient representation of 2D subset of BRDF and proposed
a method for exploiting hardware graphics accelerator for
real-time rendering.

This paper represents a new BTF based rendering
method capable of composing images of deformable objects
from arbitrary viewpoints, and under arbitrary illumination.
To realize this goal, we acquire and manage a BTF dataset
with 4D lighting/viewing parameterization, because defor-

mation causes changes of both illumination and viewing di-
rections. In the following sections, we describe how we
construct an original data structure based on BTF, and pro-
pose a synthesis method for our purpose. Then we present
several experiments on objects with non-rigid characteris-
tics (e.g., cloth with varying shininess, a 3D object with
complicated surface attributes) which are difficult to render
correctly by traditional model-based CG techniques.

2. Theory

To synthesize an object whose position and pose change
arbitrarily, we have to consider the relative relationship be-
tween the light source intensity and direction as well as the
surface orientation and view direction. Certainly, if the sur-
face property is completely lambertian, we do not need to
concern ourselves with the relationship. However, the ac-
tual material usually has non-rigid effects, e.g., animal fur
and velvet. Therefore, to synthesize such objects, we use
the function (1) for rendering.

Fi(~!l; ~o;R) (1)

Here, ~!l denotes the lth light source direction, ~o the view-
ing direction in the world coordinates. R is the rotation
matrix which translates world coordinates into local coor-
dinates of the surface (see Fig.1). This function represents
the RGB value and is defined at each mesh i. Therefore,
when we render the mesh with this function, we select the
appropriate texture from a stored texture database(we will
explain this database in the next section) and simply texture
map it onto the mesh. For actual calculation using this func-
tion, we also need two more parameters, di and ul, which
represent the weight function of distance between the light
source and mesh and light source intensity, respectively. In
terms of parameters, we assume that both di and ul are lin-
ear functions ; di is inversely proportional to distance and ul
is proportion to light intensity. Thus, the actual RGB value
can be calculated as follows:

X

l

diulFi(~!l; ~o;R) (2)

To realize function Fi, we have to configure a suitable
data structure for actual implementation. Fi has parameter
of 7 (= 2 + 2 + 3) degree of freedom, but we can assume
that , if the view direction ~o, the illumination direction ~!l,
and the surface are transformed by the same rotation matrix
R
0, the function Fi remains constant. Thus

Fi(~!l; ~o;R) = Fi(R
0 ~!l;R

0~o;RR0�1)

= Fi(R
�1 ~!l;R

�1~o;E)

= Fi(~!0l;
~o0): (3)
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Fi in the last line is in reparametrized form omitting E, ~!0l
and ~o0 are local coordinates expression transformed from ~!l

and ~o. Therefore, the texture database has 4 arguments with
the parameters of light source direction (�l; �l) and view di-
rection (�w; �w). This 4D texture database represents the hi-
resolution map of BRDF or, more precisely, the BTF (bidi-
rectional texture function). Since we consider not only the
2D texture, but also the 3D object, we have to make a set
4D-parametrized BTF patches for each individual mesh of
the surface.

world 
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coordinates
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light source
ω

ο
l

Figure 1. Definition of coordinates and direc-
tions for BTF

Once we have database of BTFs rendering objects un-
der arbitrary conditions (i.e. object rotation or illumination
direction) and deformation is quite simple. First, we calcu-
late the 4D parameter (�0l ; �

0

l, �
0

w ; �
0

w), of each geometrical
mesh point based on the geometrical data of deformed (or
undeformed) objects and rendering conditions. Then select
the appropriate texture from the texture database and map it
onto the the mesh.

3. Algorithm

To make this 4D-parametrized BTF, we configured the
original data acquisition platform shown in Fig.2(a). In this
system, the object we want to model is mounted onto the
platform and turned by three servo mortors. The rotation
angle of each of the mortors corresponds to parameters of
Euler angle representation of 3D rotation of the object: �,
� and 
 (Fig.2(b)). The control of these rotation param-
etes and chapturing images with CCD cameras are done
automatically. With this 3D rotation, we can cover all the
viewing directions from objects’ surface. In terms of the
change of illumination position, the 3D rotation by the plat-
form covers it up to rotation around viewing diretions. The
one remaining parameter to represent BTF information is
the angle between the viewing direction and the lighting di-
rection, � (Fig.2(b)).

Changing the parameters �; �; 
; �, we capture the im-
ages of the object. From the images, we extract the object
silhouette by background subtraction (this is quite robust
and accurate, because we fix the camera and light source

position for capturing process) and project this silhouette
onto the voxel space to construct the 3D shape.
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Figure 2. Image capturing platform

Since this 3D shape is made from the image itself, cap-
tured images and polygons are accurately aligned from the
very beginning. However, our 3D shape acquisition method
based on image silhouettes theoretically cannot reconstruct
convexity. Also, image- based approaches usually have es-
timation errors because of noise and shadows in the back-
ground. Therefore, we use the 3D shape acquired by the
range sensor to construct the texture database. Although
the 3D polygons are not yet aligned to the image, we carry
out the alignment between these two 3D objects and then
project polygons of the 3D object to the images for acquir-
ing the mesh texture. For alignment of the 3D objects, we
adopt the Wheeler[14]’s iterative method.

At this stage, all the textures in one texture image origi-
nate from one photograph. Since each mesh of the 3D ob-
ject has its own surface normal direction, the texture param-
eters (�l; �l, �w; �w) of an image vary. This condition is un-
desirable for effective texture handling using 4D parameters
as a search key.

Now we have a set of texture images, each of which has
constant parameters. If we can assume correct alignment, a
set of pixels picked at the same positions for all the images
originate from the same surface point. To compress texture
data, we fit each set of pixels to reflection models, analyze
residual data to remove errors or noises, and apply PCA to
compress remaining data.

As the reflection function, we used Phong’s model[17].
Ignoring ambient light and attenuation of rays, we obtain
the following form:

Ic = kdc(~n0; ~!0l) + ksc(~r0; ~!0l)
p (4)

~r0 = 2~n0(~n0; ~!0
l)�

~!0
l

(5)

where Ic is observed intensity for color channel c, (; ) de-
notes inner product, kdc and ksc are coefficients for diffuse
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and specular reflections for color c respectively. ~n0 is the
surface normal vector expressed in the local coordinates.

Since we have a priori information of parameters for
each pixels, we can easily fit pixel values to equation (4) us-
ing multivariable regression, obtaining kdc and ksc for each
pixel set.

Although the object’s surfaces do not always obey the
form, (that’s the reason why we obtain BTF), the bulk of
BTF can be explained by the model in many cases. If the
form (4) is not appropriate at all, we can provide several
different models, made by shifting directions of ~n or ~r.

After the fitting precess, we clamp residual values limit-
ing maximum absolute values, assuming values which ex-
ceed certain range as errors. The remaining residuals are
compressed with a PCA approrach, treating each texture as
a vector, as done in [11, 12]. All the residual textures are ex-
pressed as linear combinations of a relatively small number
of textures.

Because we already have 4D texture database, the ren-
dering process is quite simple. We translate ~!l and ~o into
a local coordinate expression, determine the 4D parameter
(�l; �l, �w; �w), and select the appropriate texture from the
4D texture database. When we make the novel texture data,
because the 4D database is discrete, we apply the bilinear
interpolation from the closest texture images for the actual
rendering.

4. Experiments and results

To evaluate our method, we captured images of several
types of objects (cloth, can, stuffed animal) using our cap-
turing platform, and made 4D texture data for each of the
objects. Then, we deformed the shape of the objects and
rendered the deformed objects using our proposed method.

As the first experiment, we spread a Japanese cloth and
applied our method. Because this cloth has texture of shini-
ness, BRDF property along the surface varies sharply. Fig.
3 shows the results. We can observe the changes of shini-
ness along the surface very clearly. Furthermore, when we
deform the object continuously, the locations of specular
lights move accordingly. This can be of much help for us to
sense the texture and change of property along the surface.

The second type of objects we modeled were cans with
non-uniform, shiny texture. These objects, cans wrapped in
handmade Japanese paper, also had complicated reflection
property. Unlike 2D objects, alignment between 3D objects
and captured images is significantly important in order to
render the object with consistent appearance. We synthe-
sized sequence of images of the objects by bending and
twisting them. Fig.4 shows the result we obtained. We can
see that the appearance with lighting direction is consistent
for all surface of the objects. Also, note that the locations

Figure 3. Rendered images of cloth with tex-
tured shininess

of specular moves naturally as the renderd cans are bent or
twisted.

Figure 4. Renderd images of deformed cans

To demonstrate modeling of more complex sheped ob-
jects, we used the method to render a staffed dog. Fig.5
shows rendered images. Each of the redered images depicts
the object deformed in different ways. Lighting on the doll’s
surface is correctly represented on the images.

We performed the compression scheme on the texture
database of a can described before. The size of BTF patches
was 14 �14, ,the object was covered by 1764 patches of
mesh, which composes an texture image of 14112 pixels.
The number of images used were 72. After fitting to the
model of form4, the data of each color channel reduces
to 2 images ,14112 pixels each. We performed render-
ing experiment using these textures appropriated only by
the model(Fig6(a)). In the result, seams appeared between
textures, which implies that the residual pixels should be
recorded to provide good quality of textures.

For error correction and data reduction, we clamped the
residuals so that their absolute value is at most 40, and com-
pressed the clamped data using PCA. PCA was performed
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Figure 5. Rendering results of a stuffed dog

(a) (b)

Figure 6. Redering results using (a) texurtes
described only by model fitting, and (b) tex-
urtes described by model and PCA

for each set of patches corresponding to a mesh point so
that approximation error for the set becomes less than 1 %
of the original signals. The average number of eigenimages
for each set of patches was 4.96. Thus the average number
of images needed was 6.96. Without clamping values, the
average number of images was 8.96. For comparison, com-
pression with only PCA was performed, resulting in 6.95
eigenimages for a set of patches, on the average. The ren-
dering result for this texture is shown in Fig6(b). The qual-
ity of the result was almost as good as the result using the
original, uncompressed textures. Affect of clamping resid-
uals on rendering quality were very small.

Fig7 show the result. Fig7 (a) and (d) are texture patches
before and after the error correction. In Fig7 (a), there were
blue pixels originating from the background of the original
photo. By error correction, we could remove the blue pixels
as in (d). Fig7 (b),(c), Fig7(e) and (f) are rendering results.

In Fig7 (b) and (c), we could see that narrow band of blue
pixels remained around the contour of the can. In In Fig7
(e) and (f), the band was substantially reduced.

(a) (b) (c)

(d) (e) (f)

Figure 7. Rendering results before error re-
moval are (a) texture, (b) rendering result, and
(c) magnified rendering results. Rendering
results after error removal are (d) texture, (e)
rendering result, and (f) magnified rendering
results.

5. Further works

Currently, in our approach, certain patches of texture are
impossible to obtain because the capturing platform itself
occludes the objects. To alleviate this problem, we are
searching for a way to interpolate textures from neighbor
textures.

Shadow on the object which disappears after deforma-
tion is also a big problem, because we could not capture the
actual ray for this situation. One Possible way to this prob-
lem is removing shadow from the texture data, since we can
synthesize shadow if there’s no shadow in the texture.

Also, we are now looking for more efficient ways for
representing huge texture database. As a preliminary work,
we are experimenting with 6discrete wavelet transforma-
tion(DWT). Because BTF is 6 dimensional and the pixels
are strongly correlated along each of these axis, we think
that 6-dimensional DWT may achieve good compression.
Currently, we obtain compression rate of 3.1%, although it
was far worse than our expectations.
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6. Conclusion

We proposed an extended method for applying IBR tech-
niques to deal with rotation or deformation of objects, and
change of illumination direction. To achieve this goal, we
proposed and implemented an efficient IBR algorithm and
a 4D data structure. The algorithm was realized by function
Fi(~!

0

l;
~o0) which expresses BRDF. Calculating the 4D pa-

rameter (�l; �l, �w; �w), we can select appropriate texture
image from BTF database.

To implement our method, we made a special facility
“light dome” for the data acquisition process. With this
dome, we easily captured the sequential image data and 3D
model of the object and subsequently generated the texture
data sets with 4D lighting/viewing parameters.

To evaluate the effectiveness of our proposed method, we
conducted several experiments using various objects. With
our proposed algorithm, we successfully rendered the de-
formed objects with non-rigid surface effects. For future
work, we shall pursue applications of this method to CG
animation and mixed reality systems.
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