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Abstract: Rendering objects with arbitrary view direction and light direction using image-based rendering requires
enormous amount of image samples of the objects. We have developed a specialized image capturing platform for this
purpose, and a method to construct texture databases from captured image sets and to compress the databases using
TPE (tensor product expansion) We also developed a scheme to render captured objects. With our method, objects can
be rendered with arbitrary view/light direction and with geometrical deformation.

1 Introduction

Making renderable models from actual objects is a chal-
lenging problem. Modeling manually using a CG modeler
is time consuming and the cost is high. The models can
be made more easily by acquiring the shapes of the objects
using a range finder and making simple textures from sev-
eral photographs. However, observing the objects from an
arbitrary viewpoint or changing the directions of the light
sources requires models that are more detailed.

One possible method is estimating detailed reflection
models for all the surfaces using physics-based computer
vision techniques [9]. The advantage of this method is that
the object can be rendered very realistically if the object’s
surface model is correct. The drawback is that sometimes
the surface property is so complicated that it is intractable
to describe with simple mathematical forms (for example,
complicated surface textures such as fur). Even if it is pos-
sible to represent reflection formulaically, estimation of pa-
rameters for all the surfaces is a difficult problem, especially
if the formula has many parameters.

One alternative method is to model the surface proper-
ties of the object from the sampled photographic data, as
it is. Objects can be rendered realistically using a combi-
nation of geometrical data and textures sampled from pho-
tographs [12, 3, 18]. For example, the surface light field
rendering technique captures light rays emitted from the
object’s surface instead of from the camera plane. Orig-
inally, these light rays could be defined by a 4D parame-
ter called the bi-directional reflectance distribution function
(BRDF). Since BRDF is a point-wise function, for efficient
handling of mesh models, bi-directional texture function
(BTF), defined as a six dimensional function with 2D tex-
ture associated with 4D light and view direction[5], is often
captured for each polygon patch. Using this BTF data, we
could render an object by IBR more freely as in conven-
tional model-based 3D CG applications; however, texture
data for arbitrary light/view direction is huge and difficult
to acquire and handle. Recent approaches [12, 3, 18]. use
2D or 3D subsets of the whole BTF or BRDF.

In this paper, we present a BTF-based object modeling
technique for rendering with arbitrary viewpoints, illumi-
nation and deformation. To realize this goal, we acquire
and manage a full BTF dataset with 4D lighting/viewing
parameterization. To enable commonly used PCs to han-
dle the enormous amount of data, we have developed a

new method to compress the BTF data. Our method
simultaneously utilizes several independent data correla-
tions, which are inherent in high-dimensionally parameter-
ized BTF data. By exploiting more than one correlation,
our compression algorithm achieves more efficient compres-
sion rates than does singular value decomposition (SVD),
which is often used for texture compression. Objects with
unaltered geometry can be rendered as an approximation of
the original appearance. With deformation, rendering re-
sults are correct with respect to shading effects and specu-
lar locations, although effects of interreflection and shadows
become erroneous as the geometry is altered.

2 Background and Related Works

In IBR research, dealing with changes in rendering con-
ditions (the viewpoint/light direction) has been a difficult
problem because the original idea of IBR was to “replay”
the light information of the scene as is [7] [8]. One possi-
ble solution for realizing arbitrary view/light direction is to
use geometric information. In an actual implementation,
the surface light field, a term coined by Miller et al. [10], is
a function that assigns an RGB value to every ray emanat-
ing from every point on a surface. Using this function and
geometric data makes it possible to compose scenes from an
arbitrary viewpoint. Since the appearance data of surface
light fields can be regarded as an approximation of BTF
with added effects of interreflection and shadows, it can be
expressed by the same parameterization and value type as
those of BTF. Since the dimension of BTF is 6D, obtaining
BTFs of a 3D object is a challenging problem[5].

The most closely related work to ours is that of Nishino
et al.[12], Wood et al.[18], Chen et al.[3] and Furukawa et
al. [6]. Nishino et al. realize image synthesis with an arbi-
trary light direction, and a view direction with one degree of
freedom (rotation about a fixed axis). Wood et al. achieve
image composition from an arbitrary viewpoint and a fixed
lighting condition. Chen et al. propose a method for ex-
ploiting graphics hardware acceleration, realizing real-time
rendering, and composing images from arbitrary viewpoints
and zoom-ups with a fixed lighting direction. Furukawa et
al. capture BTF database by using a specialized capturing
platform and render objects using the database.

With regard to data acquisition and compression,
Nishino et al. acquire a BTF subset with 3D parameter-
ized light and view (1D for view and 2D for light direction)
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by using a turntable and a light dome. They compress
the data using an SVD-based compression algorithm called
the eigentexture method. Wood et al. acquire a subset
of BRDF with a 2D parameterized view and fixed lighting
direction, generated from photographs taken from every di-
rection with a gantry. They treat the 2D light field on each
surface point as a unit (lumisphere) and propose compres-
sion methods similar to PCA and vector quantization. In
the work of Chen et al., a 2D subset of BRDF is taken
by capturing object images from various directions. Their
data compression is done with an SVD-based method. (See
Table 1)

In all of the above research methods that acquire
the BTF of jagged objects, only subsets with 2D or 3D
view/light parameters are constructed, and the freedom of
the rendering conditions (deformation/view/lighting) is in-
herently restricted. On the other hand, our research, which
fully captures the BTF with 4D view/light parameters, has
no limitations on either the view or the light directions. We
can synthesize the object’s image under arbitrary view and
lighting conditions. In addition, allowing distorted effects
of inter-reflection and shadows, we can render 3D objects
deformed from their original shapes.

Table 1: Dimension of light field
θlight φlight θview φview

Wood et al. ◦ ◦
Debevec etal. ◦ ◦
Nishino et al. ◦ ◦ ◦
Chen et al. ◦ ◦
Our method ◦ ◦ ◦ ◦

3 Data Acquisition

In order to model objects with textures for arbitrary
view/lighting directions, we have to provide a texture
database with multi-dimensional indices. To make this col-
lection of textures, we designed and constructed an origi-
nal data acquisition platform. As shown in Fig.1(a), this
system consists of two large concentric circles. One cir-
cle is equipped with multiple CCD cameras and the other
is equipped with multiple halogen lamps. A PC controls
these CCD cameras and halogen lamps. At the center of
this circle, there is a platform on which we place an ob-
ject to be captured; this platform is rotated around the
vertical axis by a stepping motor. In addition, the large
circle equipped with multiple lamps is rotated horizontally
by another motor(Fig.1(b)). These stepping motors are in-
dividually controlled by the PC. Therefore, this system can
capture complete BTF information by changing the param-
eters of turn table angle (1D “α” ), selection of camera (1D
“β” ), rotation angle of lamp circle (1D“γ”), and selection
of lamps (1D ”δ”).

Using the capturing platform, we capture the images of
the object, changing the parameters by

α = ∆α iα, β = ∆β iβ, γ = ∆γ iγ , δ = ∆δ iδ,

where notations ∆X are the capturing intervals and iX

(a) (b)

Figure 1: Image capturing platform (a)equipped with range
sensor (b) concentric arc system

is the index for each parameter X. Normally, we set
∆α = ∆γ . The captured images are indexed by tuple
(iα, iβ , iγ , iδ). From the images, we construct a 3D shape
with a visual hull technique using voxel carving [13], [16].
First, we extract the object silhouette by background sub-
traction (this process is quite robust and accurate because
we fix the camera and light source position for the captur-
ing process) and then project this silhouette onto the voxel
space to construct the 3D shape. In this paper, we express
acquired polygons by P (ip)(0 ≤ ip < Np) where ip is the
polygon index, Np is the number of polygons, P () is the
polygon specified by polygon index.

Shape acquisition based on image silhouettes theoret-
ically cannot reconstruct concavities of objects. For such
objects, we capture their correct 3D geometrical data using
laser range scanners that allow concavities, and align the
captured geometries to those retrieved by voxel carving.
The alignment procedure is based on Wheeler’s iterative
method[17].

Textures are acquired by mapping images into fixed tri-
angles for each polygon. The acquired textures are specified
by polygon index ip and the indices for capturing param-
eters (iα, iβ , iγ , iδ). We reparameterize these textures so
that the indices are separated into two pairs, the first rep-
resenting view directions and the second representing light
directions. Both view and light directions are represented
by certain local coordinates which are fixed onto the object.
The process is done in the following form:

ivθ ≡ iα, ivφ ≡ iβ , ilθ ≡ iγ − iα, ilφ ≡ iδ.

∆vθ ≡ ∆α, ∆vφ ≡ ∆β, ∆lθ ≡ ∆α, ∆lφ ≡ ∆δ.

Here, ivθ and ivφ represents view directions, and ilθ and
ilφ represents light directions. ∆vθ, ∆vφ, ∆lθ and ∆lφ

denotes sampling intervals for all the indices. From the
re-indexed texture set, each texture is specified by tuple
(ip, ivθ , ivφ, ilθ , ilφ). To express a texture specified by the
index, we use a notation of T (ip, ivθ, ivφ, ilθ , ilφ) in this pa-
per. We denote domains of these indices by

0 ≤ ivθ < Nvθ , 0 ≤ ivφ < Nvφ, 0 ≤ ilθ < Nlθ, 0 ≤ ilφ < Nlφ

Although there are more sophisticated
parameterization[14], we use the simple parameter
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space described above in order to avoid resampling of
textures. Since we sampled the images by relatively coarse
intervals in parameter space (30◦) for the experiments
described later, degradation of quality of textures due to
resampling was not neglectable.

An example of a re-indexed set of textures is shown in
Fig. 2. Fig. 2 (a) is the modeled object (a toy post) and
(b) visualizes a subset of the texture data which originates
from a single polygon, which can be considered to be a set
of textures {T (ip, ∗, ∗, ∗, ∗)}, where ∗ means “don’t care”.
Since the shape of the object is roughly convex, we used
only voxel carving to generate a 3D model. In Fig. 2(b),
each column (vertical sequence) of textures is a subset of
a certain view direction, which is {T (ip, ivθ , ivφ, ∗, ∗)}, and
each row (horizontal sequence) of textures is a subset of a
certain light direction, which is {T (ip, ∗, ∗, ilθ , ilφ)}.

(a) (b)

Figure 2: Model and texture database: (a) an original im-
age of the modeled object, (b) visualization of parameter-
ized textures, in which each row of textures is captured
from a certain view direction and each column of textures
is captured for a certain light direction.

The set of textures acquired from raw images is not
the BTF in the rigorous meaning since it includes effects
of interreflection and shadows. However, we use the ac-
quired texture set as a BTF dataset for rendering bacause
objects with unaltered geometry can be rendered as an ap-
proximation of the original appearance. With deformation,
rendering results are correct with respect to shading effects
and specular locations, although effects of interreflection
and shadows become erroneous as the geometry is altered
from the original shape.

4 Compression of Parameterized Tex-
ture using Tensor Products expan-
sion

Now, we have constructed an indexed set of textures, or
BTF. Before describing our compression method for the
huge amount of data, let us briefly overview the compres-
sion methods of existing surface light field research.

One well known method to compress texture images
uses PCA/SVD-based compression [12][3]. In that research,
texture data is rearranged into 2D indexed elements, or a
matrix. The matrix is approximated as a sum of the outer
products of vectors using SVD. The approximation is more
efficient if the row vectors (or column vectors) of the matrix
have strong correlations. In the eigentexture method [12],

texture images for each polygon are rasterized into vectors
specified by a 1D view index. Matrices are formed by align-
ing these vectors according to view indices. In the work of
Chen et al. [3], compression is done in a way similar to the
eigentexture method, except textures are first re-sampled
for uniformly distributed 2D view directions and then com-
pressed. The re-sampling of textures prevents uneven ap-
proximation, and 2D indexing of the view enables efficient
hardware-accelerated rendering.

Let us examine our indexed texture set for a single poly-
gon shown in Fig. 2, in which each column of textures
corresponds to a certain view direction, and each row cor-
responds to a certain light direction. We can see that the
textures in each row tend to have similar average intensi-
ties. This is because diffuse reflection, which amounts to
most of the reflection, tends to depend only on light direc-
tion. For each column, texture patterns are most similar
because they are captured from fixed view directions. Thus,
the changes in intensity and texture pattern are strongly
correlated between columns and rows of textures. If we
compress the textures by PCA/SVD-based techniques such
as the eigentexture method, and arrange the coefficients
of eigentextures (principal components) by view and light
indices, it is expected that there still remain strong cor-
relations along these indices. To utilize these correlations
for efficient compression, we pack the texture database into
tensors and approximate the tensor using tensor product
expansion (TPE).

Tensor and TPE are generalizations of matrices and
SVD. As matrices are expanded into sums of products
of vectors, tensors can be expanded into sums of tensor
products[2]. Let A be a 3D tensor of size L ×M × N . A
can be expressed as

A =
∑

r

αrur ⊗ vr ⊗ wr, (1)

where r is an index of terms, αr is a coefficient of term r,
ur, vr and wr are unit vectors, and the operator ⊗ means
tensor product. Thus, the form above means

Ai,j,k =
∑

r

αrur,ivr,jwr,k. (2)

|ur| = 1, |vr | = 1, |wr| = 1,

αr ≥ αs if r < s

where Ai,j,k is an element of tensor A with indices of i, j, k,
ur,i is ith element of vector ur. We can approximate tensor
A by neglecting terms with small significance (i.e. terms
with small αr). Truncating the form into a sum of K terms,
we achieve a compression rate of K(L + M + N)/LMN.

There are several different ways to pack texture set in-
formation into tensors. One of them is to pack a tensor set
from a polygon {T (ip, ∗, ∗, ∗, ∗)} (here, symbols “*” mean
“don’t care” ) into a 3D tensor, using the first tensor index
for indicating texel, the second for view direction, the third
for light direction. This is done by constructing tensors
A(ip) of size Nt × (NvθNvφ)× (NlθNlφ) (Nt is the number
of texels in a texture) for each polygon P (ip) by

A(ip)i, (ivθ Nvφ+ivφ), (ilθ Nlφ+ilφ)

= Texel(i, T (ip, ivθ, ivφ, ilθ, ilφ)) (3)
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where Texel(i, ·) denotes ith texel value of a texture. 2D
arrangement of textures by view and light indices (i and
j in the form above) is the same as the one shown in Fig
2(b).

One drawback of this packing is that textures which
have strong specular reflection do not align into columns
in the arrangement of Fig 2(b). Examining the figure, we
can see some bright textures aligned in a diagonal direction.
Those bright textures include strong specular components.
There are also some blank textures aligned in the same way.
These textures cannot be captured because the lights for
the halogen lamps on the capturing platform are occluded
by the circle equipped with cameras for the view/light con-
dition. These diagonally aligned elements are difficult to
approximate by the form (2), and we have found them to
be harmful for TPE compression. Since these textures are
almost uniform textures, we subtract DC components from
all the textures and approximate only AC components by
TPE. DC components are stored separately.

As opposed to SVD, for which there exists a robust
algorithm to calculate optimal solution, an algorithm to
obtain the optimal solution for TPE is still an open area
of research. Murakami et. al proposed a fast calculation
method for TPE, applying the power method which was
originally used for calculating SVD [11]. Although their al-
gorithm is not guaranteed to produce the optimal solution,
we use this method because it is fast and its solution is suf-
ficient for the purpose of compression. A brief description
of their algorithm to calculate the expansion of a 3D tensor
A is as follows:

• By iterating the following procedure, obtain αs, us,
vs, ws of equation (1) for s = 1, 2, · · ·.

– Initialize us, vs, ws as arbitrary unit vectors.

– Obtain the residual tensor R through the oper-
ation R← A−∑s−1

r=1
αsus ⊗ vs ⊗ ws.

– If (‖R‖/‖A‖)2 is less than ε, stop the calculation,
where ‖·‖ means the 2-norm of a tensor (the root
of the sum of squared elements in a tensor), and
ε is the tolerable squared error rate.

– Iteratively update ur, vr, wr until these vectors
converge by applying the following steps.

∗ Obtain ũr, ṽr, w̃r by the following contract
operation:

ũr,i ←
M∑

j=1

N∑
k=1

Ri,j,kvr,j , wr,k

ṽr,j ←
N∑

k=1

L∑
i=1

Ri,j,kwr,k, ur,i

w̃r,k ←
L∑

i=1

M∑
j=1

Ri,j,kur,i, vr,j

∗ Update ur, vr, wr as the normalized
ũr, ṽr, w̃r: ur ← ũr

|ũr| , vr ← ṽr
|ṽr | , wr ← w̃r

|w̃r | .

To test the efficiency of the compression method, we
compressed textures using an SVD technique (eigentexture
method) and TPE-based compression with two different

dimensions. The sample object was a toy post shown in
Fig. 2. Each texture has 136 pixels. There exist 2592
(12 × 3 × 12 × 6) textures for each polygon. Intervals of
azimuth and elevation angles are 30◦. For SVD we packed
the pixel values into matrices B(ip) with size of 136×2592,
which can be expressed as

B(ip)i, (ivθ Nvφ Nlθ Nlφ+ivφ Nlθ Nlφ+ilθ Nlφ+ilφ)

= Texel(i, T (ip, ivθ , ivφ, ilθ, ilφ)).

We tried two different packing methods for TPE based
compression. One method consists of packing textures into
3D-tensors A whose size is 136 × 36 × 72, where the three
tensor indices correspond to texel location, view direction
(ivθ and ivφ) and light direction (ilθ and ilφ) respectively,
using the form 3. The other method is packing textures
into 4D-tensors C whose size is 136 × 36 × 12 × 6, where
the four tensor indices correspond to texel location, view
direction (ivθ and ivφ), and light direction indices (ilθ and
ilφ). The packing is done by the form

A2(ip)i,(ivθNvφ+ivφ),ilθ ,ilφ

= Texel(i, T (ip, ivθ , ivφ, ilθ , ilφ))

We approximated the matrices and tensors by
SVD/TPE so that each matrix/tensor had a root of sum of
squared error less than 15.0 (Range of pixel value is from
0 to 255). The threshold was chosen so that the aver-
age approximation rate became about 0.01. The experi-
ment was done for 100 polygons. Table 2 shows the result,
which describes data sizes needed to store each term, aver-
age numbers of terms needed to approximate textures for
each polygon, and average data sizes for each polygon in-
cluding stored AC components. It was assumed that the
compressed data were expressed as a collection of 2 byte
short numbers. Because the freedom of the approximation
model decreases in order of SVD, 3D TPE, and 4D TPE,
the number of terms needed for approximation increases
in the same order. TPE-based compression uses less size
to store 1 term of the expanded data, but it needs more
terms for approximation. As a result, data size 3D TPE
compression was about 2.4 times less than SVD. Although
the data size for 1 term of 4D TPE was smaller than that
of 3D TPE, the average data size of 4D TPE compression
was larger than 3D TPE because of the increased number
of terms. Figure 3 plots the data sizes of compressed tex-
tures for each polygon, compressed using SVD and 3D TPE
method. The horizontal axis represents polygon index ip,
and the vertical represents the compressed size of the tex-
ture data.

Table 2: Compression result

Data Average Average
size number data

(1 term) of term size

SVD 5456 8.56 46703

3D TPE 488 23.22 19107

4D TPE 380 34.99 21072
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Figure 3: Data sizes of compressed textures (SVD
and TPE)

Fig. 4 shows how TPE approximates textures. Fig.
4(b) is the AC components of the original texture (a). (b)
is approximated by term 1 (c) and the residual of term 1 is
(d). The texture is then approximated by term 3(shown in
(e)). The resulting approximation is shown in (h).

5 Rendering

To render modeled objects we have to generate textures
for each polygon. Let us assume that we have vertices
V (iv)(0 ≤ iv < Nv) which form polygons P (ip)(0 ≤
ip < Np), where iv represents the index of vertices, V (iv)
is the vertex specified by index iv and Nv is the num-
ber of vertices. Polygon P (ip) consists of three vertices
V (t(ip, j))(0 ≤ j ≤ 2), where t(ip, j) is a table that enables
us to look up vertex indices by polygon indices.

For the rendering process, the user can specify virtual
camera position, light direction, object position (transla-
tion and rotation) and geometrical deformation. From
the camera position and object position, rotation from the
camera coordinate system to the object coordinate system,
which we express as Ro, is calculated. Let us assume that
view direction and light direction can be expressed by vc

and lc in the camera coordinate system. Normally, vc is a
fixed vector (for example [0, 0,−1]t). Thus, view and light
directions expressed by the object coordinate system are
Rovc, Rolc.

From the given deformation, we calculate the 3D rota-
tion of surface point V (iv) relative to the object coordinate
system, which can be expressed as Rd(iv). If there is no
geometrical deformation, Rd(iv) = I (I is an identity ro-
tation) for all vertices. Relative rotation of each vertex
V (iv) from the camera coordinate system can be expressed
as Rd(iv) ◦ Ro.

Rd(iv) may be directly calculated if a mathematical
model of the deformation is given. If it is not available,
we can calculate Rd(iv) from a geometrical transformation
caused by deformation. To do so, we calculate the nor-
mal vector at V (iv) with and without deformation, which
we describe as n′(iv) and n(iv), respectively. Further, we
calculate normalized direction vectors of edges connected
to vertex V (iv) with and without deformation, which we
describe as e′(iv, j)(j = 0, 1, 2, · · · , E(iv) − 1) e(iv, j)(j =
0, 1, 2, · · · , E(iv) − 1), where E(iv) denotes the number of
edges connected to vertex V (iv). Then we obtain the ro-

(a) (b)

(c) (d)

(e) (f)

Figure 4: Approximation by TPE: (a) Original im-
age, (b) AC components of textures, (c) Term 1 of
TPE, (d) Residual image after subtraction of term
1, (e) Term 3, (f) Result image

tation Rd(iv) such that n′(iv) ≈ Rd(iv)n(iv), e′(iv, j) ≈
Rd(iv)e(iv, j)(j = 0, 1, 2, · · · , E(iv) − 1). We used the
method of Arun et. al [1] for the calculation.

Now, we get

vr(iv) ≡ (Rd(iv) ◦Ro)vc, lr(iv) ≡ (Rd(iv) ◦ Ro)lc,

where vr(iv) and lr(iv) are view and light directions at ver-
tex V (iv) expressed by object coordinate system. Describ-
ing azimuth and elevation angles of the direction vector
by azm(·) and elv(·), four angles azm(vr(iv)), elv(vr(iv)),
azm(lr(iv)) and elv(lr(iv)) have direct correspondence to
indices of the texture database, ivθ , ivφ, ilθ and ilφ. Since
the pair of view and light directions [vr(iv)), lr(iv)] repre-
sent conditions of the texture used for rendering, we call it
“rendering condition.” Also, we call the view direction of
the pair “rendering view condition,” and the light direction
“rendering light condition.”

Textures in the BTF database are sampled at discrete
directions of view and light, so we interpolate the sample
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textures to generate textures needed for rendering. We call
the view/light direction pairs in the database “sample con-
ditions,” and we use the terms “sample view conditions”
and “sample light conditions” in a similar way as rendering
conditions. If we plot sample view conditions or sample
light conditions, regarding their azimuth and elevation an-
gles as 2D orthogonal coordinates, the plots form lattice
points aligned by fixed intervals for each axis.

We generate textures corresponding to calculated ren-
dering conditions [vr(iv), lr(iv)]] using the weighted sum of
neighbor samples. Let ṽ0(iv), ṽ1(iv), ṽ2(iv) be three neigh-
bor sample view conditions of a rendering view condition
vr(iv). In addition, let W v

0 (iv), W v
1 (iv), W v

2 (iv) be weights
for the neighbor sample view conditions, fulfilling the con-
straint W v

0 (iv) + W v
1 (iv) + W v

2 (iv) = 1. Selection of the
neighbor sample view conditions is done by the following
process: Let us define

i−vθ ≡
⌊

azm(vr(iv))
∆vθ

⌋
, i−vφ ≡

⌊
elv(vr(iv))

∆vφ

⌋
,

rvθ ≡ azm(vr(iv))− i−vθ∆vθ,
rvφ ≡ elv(vr(iv))− i−vφ∆vφ

where 
·� denotes floor function. Since ∆vθ and ∆vφ are
intervals for azimuth and elevation angle of sample view
conditions, (azm(vr(iv)), elv(vr(iv))) exists in the region
surrounded by (i−vθ∆vθ, i−vφ∆vφ), ((i−vθ + 1)∆vθ , i−vφ∆vφ),

(i−vθ∆vθ, (i−vθ + 1)∆vφ) and ((i−vθ + 1)∆vθ, (i−vθ + 1)∆vφ).
Then sample view conditions and their weights are defined
as [

azm(ṽ0(iv))
elv(ṽ0(iv))

]

≡




[
i−vθ∆vθ

i−vφ∆vφ

]
if (rvθ + rvφ) ≤ 1[

(i−vθ + 1)∆vθ

(i−vφ + 1)∆vφ

]
otherwise,

[
azm(ṽ1(iv))
elv(ṽ1(iv))

]
≡

[
(i−vθ + 1)∆vθ

i−vφ∆vφ

]
,

[
azm(ṽ2(iv))
elv(ṽ2(iv))

]
≡

[
i−vθ∆vθ

(i−vφ + 1)∆vφ

]
,

[
W v

0 (iv)
W v

1 (iv)
W v

2 (iv)

]

≡




[
1− (rvθ + rvφ)
rvθ

rvφ

]
if
(rvθ + rvφ) ≤ 1[

(rvθ + rvφ)− 1
1− rvφ

1− rvθ

]
otherwise.

By the definition above, three sample view conditions
ṽm(iv) (m = 0, 1, 2) are selected so that the triangle
they form includes the rendering view condition vr(iv)
in the orthogonal coordinate plane of azimuth and ele-
vation angles, and we can regard the triple of weights

[W v
0 (iv), W v

1 (iv), W v
2 (iv)]t as barycentric coordinates for

the view condition in the azimuth-elevation coordinate
space. If the rendering view condition vr(iv) is placed on
the sample view condition ṽ0(iv), the weight W v

0 (iv) is 1
and linearly decreases to 0 as vr(iv) moves toward the op-
posite side of the triangle formed by the three sample view
conditions.

For the light direction, let l̃0(iv), l̃1(iv), l̃2(iv) be the
three neighbor sampling light conditions of the render-
ing light condition lr(iv), and let W l

0(iv), W l
1(iv), W l

2(iv)
(W l

0(iv) + W l
1(iv) + W l

2(iv) = 1). be the weights for the
sampling light conditions. Weights can be seen as barycen-
tric coordinates for the light condition. Neighbor sampling
light conditions and their weights are calculated in similar
way as that of sampling view conditions and their weights
which is described above.

Using above notations, we can generate texture Tg of
polygon P (ip) calculated from the rendering condition on
vertex V (iv) as

Tv(ip, vr(iv), lr(iv))

≡
2∑

m=0

2∑
n=0

W v
m(iv)W l

n(iv)T (ip, ṽm(iv), l̃n(iv))

T (ip, ṽm(iv), l̃n(iv))

≡ T (ip, azm(ṽm(iv))/∆vθ elv(ṽm(iv))/∆vφ ,

azm(̃ln(iv))/∆lθ , elv(̃ln(iv))/∆lθ).

Note that azm(ṽm(iv))/∆vθ , elv(ṽm(iv))/∆vφ ,

azm(̃lm(iv))/∆lθ and elv(̃lm(iv))/∆lφ are all integers

for m = 0, 1, 2 because [ṽm, l̃m] are sampling conditions
where corresponding textures exist in the BTF database.

The final texture Tp(ip) of polygon P (ip) used for ren-
dering is generated by blending three textures, and is calcu-
lated from the rendering conditions on three vertices form-
ing the polygon, V (t(ip, j))(j = 0, 1, 2). The blended tex-
tures are

Tv(ip,vr(t(ip, m)), lr(t(ip, m)), (m = 0, 1, 2).

The purpose of this process is to minimize the texture
gap between polygons. This blending is done in the same
way that pixel values of three vertices are blended when
Gouraud shading is applied. Suppose that the texture co-
ordinates (0, 0), (1, 0) and (0, 1) are mapped to the ver-
tices V (t(ip, 0)), V (t(ip, 1)) and V (t(ip, 2)) respectively, and
(s0(i), s1(i)) denote texture coordinates of ith texel. Then
the texture Tp(ip) can be expressed as

Texel(i, Tp(ip))
= (1− s0(i)− s1(i))

Texel(i, Tv(ip,vr(t(ip, 0)), lr(t(ip, 0))))
+s0(i)Texel(i, Tv(ip,vr(t(ip, 1)), lr(t(ip, 1))))
+s1(i)Texel(i, Tv(ip,vr(t(ip, 2)), lr(t(ip, 2))))

When we acquire the textures, background images are
removed by background subtraction. In the process, back-
ground pixels are often “mixed” into the resulting fore-
ground images due to decision error of background pixels
or complicated object contours. To manage this error, we
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estimate the alpha values of textures at the contour of the
object based on currently published techniques[4, 15].

To estimate the alpha value, we first detect the bound-
ary region between foreground and background. This is
nontrivial in general, and some fine algorithms have been
proposed; chroma-key based technique is most well known.
At this point, we already have the depth data of the ob-
ject which is accurately matched to the image; therefore,
boundary detection can be done automatically with good
precision. The following is the actual process to detect the
boundary and estimate the alpha value.

• Calculate the surface normal (np(ip)) for each poly-
gon P (ip). If arg(np(ip) · vviewdirection) > θthreshold

then consider the polygon to be located on the bound-
ary.

• Divide the boundary area into small patches using the
Delaunay Algorithm. Select one patch and search the
nearest background and foreground areas by using a
greedy algorithm

• Make color value clusters for background and fore-
ground in RGB space by using the k-means algo-
rithm. Then construct a network among background
and foreground clusters

• Plot a pixel value from the selected patch into RGB
space; then search the nearest link. Each node is es-
timated as background and foreground color. A ratio
between foreground to pixel and background to pixel
gives the alpha value.

Once the alpha values are estimated for the textures,
we can use these values to prevent colors of the background
image from appearing on the synthesized images. Texture
images are synthesized by weighted average of original tex-
tures. In the averaging process, we multiply weight value
by alpha value for each pixel. Since the sum of “modulated
weight” may be less than 1, we divide the RGB color values
by the sum.

6 Results

To demonstrate modeling of objects, we rendered a toy post
shown in Fig. 2, a can wrapped with shiny paper (an exam-
ple which has complicated surface attributes), and a stuffed
animal with and without deformation. Geometrical data of
the toy post was acquired only by voxel carving since the
shape was roughly convex. The shape of the can was ar-
tificially generated as a cylinder. For the stuffed animal
that has relatively complex shape, we used a range scan-
ner to get surfaces and aligned them into the geometrical
data obtained by voxel carving. The numbers of polygons
forming the toy post, the can and the staffed animal were
5000, 1818 and 5000, respectively. Fig.5-7 show the post,
the can, and the stuffed animal. To test the effectiveness
of alpha value estimation, we rendered the stuffed animal
without using the alpha estimation process, and fig.8 shows
the results. For all experiments, capturing intervals of pa-
rameters (azimuth-elevation of light/view) are 30◦. We can
see that the lighting on the deformed objects’ surfaces is
correctly rendered. Two magnified parts of the synthesized
images (the left ear and the right paw) are shown on the

right side of Fig.7 and 8. We can see that artifacts due to
the background colors of original images are much less se-
vere in Fig.7 (with alpha estimation process) than in Fig.8
(without alpha estimation).

We also tried to merge the 3D CG object which was
rendered by our image-based technique into conventional
model-based 3D CG software. Fig.9 shows the result. The
object in the center of the image is the image-based ren-
dered object, while the rest of the scene was rendered with
traditional 3D CG software. Since we set only one illumi-
nation in this situation, there are no soft shadows in the
scene; the scene looks natural and the object was rendered
photo-realistically.

7 Conclusion and Future Work

In this paper, we have proposed a modeling method based
on actual textures. To construct models that can be ren-
dered for arbitrary view/light directions, we captured 4D
texture databases using a specialized platform. The plat-
form has special facilities that consist of two concentric cir-
cles for the data acquisition process; these enabled us to
easily capture sequential image data and a 3D model of the
object, and to subsequently generate the texture data sets
with 4D lighting/viewing parameters. To compress these
4D parameterized textures, we applied tensor products ex-
pansion and achieved higher compression rates than that of
SVD-based compression.

To demonstrate the application of the captured mod-
els, we rendered several models with various deformations.
With our proposed algorithm, we successfully rendered the
deformed objects. For future work, we shall pursue appli-
cations of this method to CG animation and mixed reality
systems.

Figure 5: Rendering examples: a toy post
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