
PATCH-BASED BTF SYNTHESIS FOR REAL-TIME RENDERING

Hiroshi Kawasaki, Kyoung-Dae Seo, Yutaka Ohsawa　

Saitama University, Japan
Faculty of Engineering

kawasaki@mm.ics.saitama-u.ac.jp

Ryo Furukawa

Hiroshima City University, Japan
Faculty of Information Science
ryo-f@cs.hiroshima-cu.ac.jp

ABSTRACT

In this paper, we propose a novel synthesis technique
for BTFs. A BTF (bidirectional texture function) is a 6D
function which can represent appearances of a texture un-
der arbitrary view and lighting conditions. Until now, sev-
eral approaches of BTF synthesis have been researched. For
ordinary textures, patch based methods are promising tech-
niques for texture synthesis. However, it has not been effec-
tively tried to BTFs yet. This is mainly because data size of
BTFs is so large and it is not easy to apply the techniques
to BTFs. Further, efficient rendering of BTFs is still under
research. In this paper, we extend a patch based synthesis
technique for BTFs by utilizing compact representation of
BTFs. In addition, we propose a novel technique to ren-
der the synthesized BTFs efficiently. With our proposed
method, we can successfully and effectively render objects
with complicated surfaces under arbitrary sizes.

1. INTRODUCTION

A BTF(bidirectional texture function) [1] is a 6D function
which can describe the changes of reflections and appear-
ances of a texture under arbitrary lighting and view con-
ditions. By using BTFs, rendering of objects with higher
level of reality than before with less computational cost is
possible. Thus, many intensive researches of BTFs have
been conducted so far. For actual use of BTFs, seamless
synthesis of BTFs is necessary to cover large surfaces with
small BTFs. To date, several approaches of BTF synthe-
sis have been proposed. For example, Liu et al. proposed
a method to reconstruct a meso-scopic geometry by using a
shape-from-shading technique [2], and Tong et al. proposed
a method of synthesizing BTFs using surface textons [3].

Patch based methods [4] are effective techniques for or-
dinary texture synthesis. They are also considered to be
applicable for synthesis of BTFs. However, few techniques
which adopt the patch based method for BTFs have been
proposed. A reason for this is that huge data sizes of BTFs
make it difficult to simply apply the techniques to BTFs.
Another reason is difficulty of efficient sampling and repre-
sentation of BTFs.

In this paper, we propose a patch based synthesis tech-
nique for BTFs. To achieve this, we used a compact BTF
representation which utilizes compression by spherical har-
monics (SH) for real-time rendering. In addition, we pro-
pose a novel technique to render the synthesized BTF effi-
ciently by using programmable shaders which function on
hardware. By using the proposed techniques, we can render
complicated shaped objects under arbitrary lighting condi-
tions and view directions in real-time and reduce quantity
of storage.

2. REPRESENTATION OF BTFS

A BTF is expressed as a function with arguments of a light
direction, a view direction, and texture coordinates. A BTF
with a discretized view direction parameter is expressed as

T (iv, l, s, t, c),

whereiv is index of view,l is light direction,(s, t) is image
coordinates of appearance andc is an index for designating
three primal colors (i.e., red, green, blue).

In this paper, we approximate light-dependent variation
of object appearances by SH expansion, whereas view-dependent
variation are kept discretized. Interpolation of view is real-
ized by view dependent texture mapping(VDTM).

Normally, light-dependent variations of appearances with
fixed views are relatively smooth (although there are excep-
tions such as self-shadows or speculars) and can be easily
interpolated and approximated. We use SH expansion for
this purpose, which is similar to the technique of PRT[5].

Approximation of light-dependent variation of appear-
ances are processed for each view samples as the following.
First, pixel values for fixed view index and fixed pixel co-
ordinates are extracted from the appearance samples, which
represents a light-dependent variation of appearances. Then,
these pixel values are aligned as the light directions in the
object coordinates, and rendered to a cubic texture-map.
Using smooth shadings, the sample values are interpolated
for light directions.

Coefficients of series expansion in terms of SH can be
acquired by spherical integrals. The integrals can be ap-



proximately calculated by calculating products of texel val-
ues, values of spherical harmonics basis functions, and the
solid angles of the texels for each texel in the cube map,
and then summing up all the products. Using resulting co-
efficients, the function approximating light-dependent vari-
ation ofT can be expressed as

M∑
m=1

cm(iv, s, t, c)Ym(l)

whereYm is m-th SH basis function,l is light direction,
iv is view index, (s, t) is texture coordinates of sampled
appearance andc is the color channel.

The above approximation process is repeated for all of
the view samples, the texture coordinates, and color chan-
nels. The acquired SH coefficients, which is expressed as
vectors, are approximated using primary component analy-
sis (PCA). To reduce computational complexity for calcula-
tion of SVD, we sample the vectors of SH coefficients and
use only a small number of them as inputs.

Weight vectors calculated with PCA are indexed by(iv, s, t).
Let us denote thek-th principal component vectors asbk,m,c

(1 ≤ k ≤ K) and their weights asWk(iv, s, t). The light
dependent variation of appearance at view directioniv and
texel location(s, t)) can be approximated as the following
function:

T (iv, l, s, t, c) ≈
M∑

m=1

K∑
k=1

Wk(iv, s, t)bk,m,cYm(l) (1)

The calculated function (1) is an approximation of ap-
pearance which is continuous for light directionl and dis-
crete for view direction. By taking a weighted sum of the
function (1) for three view directions, we approximate view-
dependent variation, similarly with VDTM[6].

3. SYNTHESIS ALGORITHM

3.1. Quilting BTFs

3.1.1. Image quilting algorithm

Image quilting [4] is a simple method for creating arbitrary
sizes of textures from small input textures. We apply this
method for BTFs represented as section 2. This enables
us to synthesize BTFs of arbitrary large sizes from source
BTFs with finite sizes.

Let us explain the idea of image quilting which is shown
in Fig. 1. The resulting texture is synthesized by aligning
unit image patches, which are normally square blocks. The
image patches are selected from the subimages of the in-
put texture. The selection is performed randomly from the
subimages which satisfy certain constraints. The purpose of
the constraints is for selecting subimages such that adjacent
image patches have “good continuities.” To measure the

1
B

2
B

1
B

2
B

Fig. 1. Image Quilting.

Fig. 2. Quilting of a BTF.

continuities, overlapping areas are introduced around the
image patches. The constraints are that the differences of
the image pixels of the adjacent patches on the overlapping
areas are within some error tolerance.

The borders of the aligned image patches in the synthe-
sized image is determined such that the borders go through
the minimum cost paths. The minimum cost paths are paths
that go through the overlapping areas, on which the differ-
ences between the pixels of the adjacent patches are mini-
mum. They can be calculated by dynamic programming.

3.1.2. Extension for BTF

The coefficientsWk(iv, s, t) in the form (1) can be consid-
ered as textures indexed byiv, whose texture coordinates
are(s, t). Quilting of BTFs is applied for these images.

The steps of the algorithm are as the following. Leti
andj be row and column indices of grids of the synthesized
image. Also letB(i,j) denote the patch at rowi and column
j. Fig. 2 shows the concept for quilting a BTF.

1. Randomly choose aW ×W texture patch for the grid
B(0,0) from the subimages ofWk(iv,p). The patch
sizeW is defined previously by the user.

2. For every gridB(i,j), randomly choose a patch from
some candidate subimages that satisfy the overlap con-
straints, in which that the errord calculated for the
overlap area is within the error tolerancedmax. The
overlap sizeO is defined previously by the user.



3. Find the minimum cost path along the overlapping
area by dynamic programming.

4. Paste the patchB(i,j) cut along the minimum cost
path onto the output texture.

5. Repeat the steps 2-4 until the output texture is fully
covered.

The errord and The error tolerancedmax are defined as

d = { 1
N

∑V

v=1
αv

∑K

m=1
βm

∑N

k=1
(p1

k − p2
k)2} 1

2 (2)

dmax = { 1
N

∑V

v=1
αv

∑K

m=1
βm

∑N

k=1
(ϵp1

k)2} 1
2 (3)

whereN is the number of pixels in the overlap domain,K is
the number of principal components used,βm is the weight
of the SH coefficient designated by indexm, V is the num-
ber of view directions andαv is a weight for view direction
designated by indexv. p1

k and p2
k are the coefficients of

the BTF at thek-th pixel on the overlap domain of adjacent
patches.ϵ is the error sensitive parameter by which the user
can adjust the error tolerance.

The minimum cost path is defined by dynamic program-
ming. The cost for a vertical path is defined as

ep(iv) =
∑V

v=1
αv

∑K

m=1
βm(O1

p − O2
p)2 (4)

Ek,l = ek,l(iv) + min(Ek−1,l−1, Ek−1,l, Ek−1,l+1) (5)

wherep = (k, l) are coordinates of pixels,ep is the error at
the coordinatesp, O1

p andO2
p are the coefficients of the BTF

at the coordinatesp. To compute the horizontal minimum
cost path, the similar method is applied.

RegardingWk(iv, s, t) as ak-channel, values for each
pixel represent light-dependent variations of the BTF. All
the light-dependent variations are integrated into the error
function by just summing up the errors for allk channels.

The view-dependent variations of the BTF for a fixed
pixel coordinates includes shifts of the geometrical loca-
tions on the surface. So, preparing a different border for
each view direction might be desirable if each view direc-
tion were synthesized independently with other views. How-
ever, if textures for different view directions have disconti-
nuities, interpolations between views will not work properly
and serious flickering will occur with view changes. Thus,
our method produces only one set of borders for all BTFs.

To acquire satisfying synthesized BTF, it is necessary
that the input BTF is large enough for synthesis algorithm.
It means that the search area of a similar patch in the input
image is large, and thus, computational cost is high. For
a solution of this, we adopt pyramid technique. In addi-
tion, we learn that a low frequency of SH coefficient largely
influences the synthesis of BTFs from an experimental ex-
perience, therefore, we can reduce applied SH coefficient to
2-dimensions.

Fig. 3. Quilting Map.

3.2. Quilting map

To model a quilted BTF, we use a texture image which
maps texture coordinates of the synthesized BTF into tex-
ture coordinates of the source BTF. In this paper, the texture
which consists of the texture coordinates is called a “quilt-
ing map.” Each texel in the quilting map represents tex-
ture coordinates which point a spatial location in the source
BTF. Fig.3 shows the relationships between the quilting map,
the synthesized BTF and the source BTF. In this paper, the
quilting map is denoted asQ(r), wherer represents the tex-
ture coordinates of the synthesized BTF andQ represents
the mapping from the texture coordinates of the synthesized
BTF into those of the source BTF. In fig.3,r1 andr2 are
the texture coordinates of the synthesized BTF andQ(r1)
andQ(r2) are those of the input BTF. Regarding the source
BTF as a palette, a quilting map is a kind of index image
representing the synthesized BTF. So, we can use the quilt-
ing map as the synthesized BTF in the process of quilting of
BTFs described in subsection 3.1. As a result, a complete
quilting map is acquired.

4. REAL-TIME RENDERING OF BTFS

Real-time rendering with quilted BTFs can be performed
using programmable shaders.

First, we load encoded data as textures onto the video
hardware for acquisition actual values for rendering. En-
code dataQ(r) is obtained from the valuer of the quilt-
ing map to the input BTF by referring. Then usingQ(r),
which is a coefficient of SH, original RGB value can be ef-
ficiently recovered by using programmable shaders [5, 7]. If
we can use graphic hardwares which support programmable
shaders, real-time rendering can be achieved.

In [5], SH coefficients is used as input BTF,Q(r) is SH
coefficientcm. However, it is not necessary thatQ(r) have
to be SH coefficient. If it is encode data to whichQ(r) is
interrelated with SH coefficient,Q(r) may be data differ-
ent from the input data of the synthesis. In this paper, we
use the principal ingredient which approximated by primary
component analysis (PCA) as for the SH coefficient.



(a) (b) (c)

(d) (e)

(f) (g)

Fig. 4. Synthesized texture under arbitrary light and view
directions

5. EXPERIMENTS

Fig. 4 shows the result of experiment. Fig. 4 (a)-(c) are
original samples of BTF and size is 64x64 pixel. Fig.4 (d)-
(g) are rendered object under arbitrary lighting and view
conditions using synthesized BTF. Size of synthesized BTF
is 256x256 pixel and rendering frame rate is more then 30
fps. In these figures, we can hardly find the boundary be-
tween patches, besides lighting and view-dependent effects
are successfully rendered.

Our proposed method can synthesize complete set of
BTF, therefore, we can render arbitrary shaped object un-
der arbitrary lighting and view conditions. Fig.5 shows the
result of our proposed method. We can see that shading
effects and specular effects derived from mezo-scopic ge-
ometry are successfully rendered without any boundary in
the textures by our proposed method.

6. CONCLUSIONS

In this paper, we have proposed a patch-based synthesis
technique for BTF. At first, the technique compress a large
amount of data to produce several representative textures
using sphrical harmonics. Then, we apply simple patch-
based synthesis technique to the representative textures; this
time, our technique does not create actual large size of BTF
data, but “quilting map” for efficient and compact data rep-
resentation. Finally, we render the object with “quilting

　
(a) (b) (c)

(d) (e)

(f) (g)

Fig. 5. Rendering complicated shaped object under arbi-
trary lighting conditions

map” using programmable shaders which realize real-time
rendering of synthesized BTF.

7. REFERENCES

[1] K. Dana, B.V. Ginneken, and J. Koenderink, “Reflectance
and texture of real-world surfaces,” inACM Transactions on
Graphics, Jan. 1999, pp. 1–34.

[2] X. Liu, Y. Yu, and H.-Y. Shum, “Synthesizing bidirectional
texture functions for real-world surfaces,” inProc. SIG-
GRAPH 2001, Computer Graphics Proceedings, Aug. 2001,
pp. 97–106.

[3] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y. Shum,
“Synthesis of bidirectional texture functions on arbitrary sur-
faces,” inProc. SIGGRAPH 2002, July 2002, pp. 665–672.

[4] A.A. Efros and W.T. Freeman, “Image quilting for texture
synthesis and transfer,” inProc. SIGGRAPH 2001, Aug. 2001,
pp. 341–346.

[5] Sloan, Peter-Pike, Jan Kautz, and John Snyder, “Precom-
puted radiance transfer for real-time rendering in dynamic,
low-frequency lighting environments,”ACM Transactions on
Graphics (TOG), pp. 527–536, 2002.

[6] Paul E. Debevec, George Borshukov, and Yizhou Yu, “Effi-
cient view-dependent image-based rendering with projective
texture-mapping,” in9th Eurographics Rendering Workshop,
1998, pp. 105–116.

[7] K. Jyo, H. Kawasaki, F. Ryo, and Y. Ohsawa, “Btf synthesis
for hardware accelatered real-time rendering,” inFIT2004,
Sept. 2004, pp. 247–248.


